Spaces:
Sleeping
Sleeping
import torch | |
from torch import nn | |
import torchvision.transforms as transforms | |
import torch.nn.functional as F | |
from pathlib import Path | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
LABELS = Path("classes.txt").read_text().splitlines() | |
num_classes = len(LABELS) | |
model = nn.Sequential( | |
nn.Conv2d(1, 64, 3, padding="same"), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(64, 128, 3, padding="same"), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Conv2d(128, 256, 3, padding="same"), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
nn.Flatten(), | |
nn.Linear(2304, 512), | |
nn.ReLU(), | |
nn.Linear(512, num_classes), | |
) | |
model_path = hf_hub_download(repo_id="jerilseb/quickdraw-small", filename="model.pth") | |
state_dict = torch.load(model_path, map_location="cpu") | |
model.load_state_dict(state_dict) | |
model.eval() | |
transform = transforms.Compose( | |
[ | |
transforms.Resize((28, 28)), | |
transforms.ToTensor(), | |
transforms.Normalize((0.5,), (0.5,)), | |
] | |
) | |
def predict(image): | |
image = image['composite'] | |
tensor = transform(image).unsqueeze(0) | |
with torch.no_grad(): | |
out = model(tensor) | |
probabilities = F.softmax(out[0], dim=0) | |
values, indices = torch.topk(probabilities, 5) | |
return {LABELS[i]: v.item() for i, v in zip(indices, values)} | |
inputs = gr.ImageEditor( | |
type="pil", | |
height=720, | |
width=720, | |
layers=False, | |
image_mode="L", | |
brush=gr.Brush(default_color="white", default_size=20), | |
sources=[], | |
label="Draw a shape", | |
) | |
demo = gr.Interface(predict, inputs=inputs, outputs="label", live=True) | |
demo.launch(debug=True) | |