Commit
Browse files- .gitignore +161 -0
- LICENSE +23 -0
- app.py +55 -0
- colorizers/__init__.py +6 -0
- colorizers/base_color.py +24 -0
- colorizers/eccv16.py +105 -0
- colorizers/siggraph17.py +168 -0
- colorizers/util.py +47 -0
- imgs/moon-captured-bw-lg.jpeg +0 -0
- requirements.txt +9 -0
.gitignore
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
.DS_Store
|
LICENSE
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Copyright (c) 2016, Richard Zhang, Phillip Isola, Alexei A. Efros
|
2 |
+
All rights reserved.
|
3 |
+
|
4 |
+
Redistribution and use in source and binary forms, with or without
|
5 |
+
modification, are permitted provided that the following conditions are met:
|
6 |
+
|
7 |
+
* Redistributions of source code must retain the above copyright notice, this
|
8 |
+
list of conditions and the following disclaimer.
|
9 |
+
|
10 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
11 |
+
this list of conditions and the following disclaimer in the documentation
|
12 |
+
and/or other materials provided with the distribution.
|
13 |
+
|
14 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
15 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
16 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
17 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
18 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
19 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
20 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
21 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
22 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
23 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from colorizers import *
|
4 |
+
|
5 |
+
# load colorizers
|
6 |
+
colorizer_eccv16 = eccv16(pretrained=True).eval()
|
7 |
+
colorizer_siggraph17 = siggraph17(pretrained=True).eval()
|
8 |
+
|
9 |
+
title = "Colorize Images"
|
10 |
+
description = """
|
11 |
+
Colorize black and white images using the ECCV 2016 and SIGGRAPH 2017 colorization papers by Zhang et al.:
|
12 |
+
- Colorful Image Colorization: https://arxiv.org/abs/1603.08511
|
13 |
+
- Real-Time User-Guided Image Colorization with Learned Deep Priors: https://arxiv.org/abs/1705.02999
|
14 |
+
<br>
|
15 |
+
Reference implementation: https://github.com/richzhang/colorization
|
16 |
+
<br>
|
17 |
+
Adapted to Gradio by DIGIMAP Group 12:
|
18 |
+
- GREGORIO, DALE PONS LEE
|
19 |
+
- SILLONA, JOHN EUGENE JUSTINIANO
|
20 |
+
- SY, MATTHEW JERICHO GO
|
21 |
+
"""
|
22 |
+
|
23 |
+
|
24 |
+
def color(image, ver):
|
25 |
+
# default size to process images is 256x256
|
26 |
+
# grab L channel in both original ("orig") and resized ("rs") resolutions
|
27 |
+
(tens_l_orig, tens_l_rs) = preprocess_img(image, HW=(256, 256))
|
28 |
+
|
29 |
+
# colorizer outputs 256x256 ab map
|
30 |
+
# resize and concatenate to original L channel
|
31 |
+
if ver == "eccv16":
|
32 |
+
out_img = postprocess_tens(tens_l_orig, colorizer_eccv16(tens_l_rs).cpu())
|
33 |
+
else:
|
34 |
+
out_img = postprocess_tens(tens_l_orig, colorizer_siggraph17(tens_l_rs).cpu())
|
35 |
+
|
36 |
+
return out_img
|
37 |
+
|
38 |
+
|
39 |
+
gr.Interface(
|
40 |
+
fn=color,
|
41 |
+
inputs=[
|
42 |
+
"image",
|
43 |
+
gr.Radio(
|
44 |
+
["eccv16", "siggraph17"], type="value", value="eccv16", label="version"
|
45 |
+
),
|
46 |
+
],
|
47 |
+
# outputs=[gr.Image(label="eccv16"), gr.Image(label="siggraph17")],
|
48 |
+
outputs="image",
|
49 |
+
allow_flagging="never",
|
50 |
+
title=title,
|
51 |
+
description=description,
|
52 |
+
examples=[
|
53 |
+
["imgs/moon-captured-bw-lg.jpeg", "eccv16"],
|
54 |
+
],
|
55 |
+
).launch()
|
colorizers/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from .base_color import *
|
3 |
+
from .eccv16 import *
|
4 |
+
from .siggraph17 import *
|
5 |
+
from .util import *
|
6 |
+
|
colorizers/base_color.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
class BaseColor(nn.Module):
|
6 |
+
def __init__(self):
|
7 |
+
super(BaseColor, self).__init__()
|
8 |
+
|
9 |
+
self.l_cent = 50.
|
10 |
+
self.l_norm = 100.
|
11 |
+
self.ab_norm = 110.
|
12 |
+
|
13 |
+
def normalize_l(self, in_l):
|
14 |
+
return (in_l-self.l_cent)/self.l_norm
|
15 |
+
|
16 |
+
def unnormalize_l(self, in_l):
|
17 |
+
return in_l*self.l_norm + self.l_cent
|
18 |
+
|
19 |
+
def normalize_ab(self, in_ab):
|
20 |
+
return in_ab/self.ab_norm
|
21 |
+
|
22 |
+
def unnormalize_ab(self, in_ab):
|
23 |
+
return in_ab*self.ab_norm
|
24 |
+
|
colorizers/eccv16.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
from IPython import embed
|
6 |
+
|
7 |
+
from .base_color import *
|
8 |
+
|
9 |
+
class ECCVGenerator(BaseColor):
|
10 |
+
def __init__(self, norm_layer=nn.BatchNorm2d):
|
11 |
+
super(ECCVGenerator, self).__init__()
|
12 |
+
|
13 |
+
model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
14 |
+
model1+=[nn.ReLU(True),]
|
15 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),]
|
16 |
+
model1+=[nn.ReLU(True),]
|
17 |
+
model1+=[norm_layer(64),]
|
18 |
+
|
19 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
20 |
+
model2+=[nn.ReLU(True),]
|
21 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),]
|
22 |
+
model2+=[nn.ReLU(True),]
|
23 |
+
model2+=[norm_layer(128),]
|
24 |
+
|
25 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
26 |
+
model3+=[nn.ReLU(True),]
|
27 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
28 |
+
model3+=[nn.ReLU(True),]
|
29 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),]
|
30 |
+
model3+=[nn.ReLU(True),]
|
31 |
+
model3+=[norm_layer(256),]
|
32 |
+
|
33 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
34 |
+
model4+=[nn.ReLU(True),]
|
35 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
36 |
+
model4+=[nn.ReLU(True),]
|
37 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
38 |
+
model4+=[nn.ReLU(True),]
|
39 |
+
model4+=[norm_layer(512),]
|
40 |
+
|
41 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
42 |
+
model5+=[nn.ReLU(True),]
|
43 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
44 |
+
model5+=[nn.ReLU(True),]
|
45 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
46 |
+
model5+=[nn.ReLU(True),]
|
47 |
+
model5+=[norm_layer(512),]
|
48 |
+
|
49 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
50 |
+
model6+=[nn.ReLU(True),]
|
51 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
52 |
+
model6+=[nn.ReLU(True),]
|
53 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
54 |
+
model6+=[nn.ReLU(True),]
|
55 |
+
model6+=[norm_layer(512),]
|
56 |
+
|
57 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
58 |
+
model7+=[nn.ReLU(True),]
|
59 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
60 |
+
model7+=[nn.ReLU(True),]
|
61 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
62 |
+
model7+=[nn.ReLU(True),]
|
63 |
+
model7+=[norm_layer(512),]
|
64 |
+
|
65 |
+
model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),]
|
66 |
+
model8+=[nn.ReLU(True),]
|
67 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
68 |
+
model8+=[nn.ReLU(True),]
|
69 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
70 |
+
model8+=[nn.ReLU(True),]
|
71 |
+
|
72 |
+
model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),]
|
73 |
+
|
74 |
+
self.model1 = nn.Sequential(*model1)
|
75 |
+
self.model2 = nn.Sequential(*model2)
|
76 |
+
self.model3 = nn.Sequential(*model3)
|
77 |
+
self.model4 = nn.Sequential(*model4)
|
78 |
+
self.model5 = nn.Sequential(*model5)
|
79 |
+
self.model6 = nn.Sequential(*model6)
|
80 |
+
self.model7 = nn.Sequential(*model7)
|
81 |
+
self.model8 = nn.Sequential(*model8)
|
82 |
+
|
83 |
+
self.softmax = nn.Softmax(dim=1)
|
84 |
+
self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False)
|
85 |
+
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear')
|
86 |
+
|
87 |
+
def forward(self, input_l):
|
88 |
+
conv1_2 = self.model1(self.normalize_l(input_l))
|
89 |
+
conv2_2 = self.model2(conv1_2)
|
90 |
+
conv3_3 = self.model3(conv2_2)
|
91 |
+
conv4_3 = self.model4(conv3_3)
|
92 |
+
conv5_3 = self.model5(conv4_3)
|
93 |
+
conv6_3 = self.model6(conv5_3)
|
94 |
+
conv7_3 = self.model7(conv6_3)
|
95 |
+
conv8_3 = self.model8(conv7_3)
|
96 |
+
out_reg = self.model_out(self.softmax(conv8_3))
|
97 |
+
|
98 |
+
return self.unnormalize_ab(self.upsample4(out_reg))
|
99 |
+
|
100 |
+
def eccv16(pretrained=True):
|
101 |
+
model = ECCVGenerator()
|
102 |
+
if(pretrained):
|
103 |
+
import torch.utils.model_zoo as model_zoo
|
104 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/colorization_release_v2-9b330a0b.pth',map_location='cpu',check_hash=True))
|
105 |
+
return model
|
colorizers/siggraph17.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
from .base_color import *
|
5 |
+
|
6 |
+
class SIGGRAPHGenerator(BaseColor):
|
7 |
+
def __init__(self, norm_layer=nn.BatchNorm2d, classes=529):
|
8 |
+
super(SIGGRAPHGenerator, self).__init__()
|
9 |
+
|
10 |
+
# Conv1
|
11 |
+
model1=[nn.Conv2d(4, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
12 |
+
model1+=[nn.ReLU(True),]
|
13 |
+
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=True),]
|
14 |
+
model1+=[nn.ReLU(True),]
|
15 |
+
model1+=[norm_layer(64),]
|
16 |
+
# add a subsampling operation
|
17 |
+
|
18 |
+
# Conv2
|
19 |
+
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
20 |
+
model2+=[nn.ReLU(True),]
|
21 |
+
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
22 |
+
model2+=[nn.ReLU(True),]
|
23 |
+
model2+=[norm_layer(128),]
|
24 |
+
# add a subsampling layer operation
|
25 |
+
|
26 |
+
# Conv3
|
27 |
+
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
28 |
+
model3+=[nn.ReLU(True),]
|
29 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
30 |
+
model3+=[nn.ReLU(True),]
|
31 |
+
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
32 |
+
model3+=[nn.ReLU(True),]
|
33 |
+
model3+=[norm_layer(256),]
|
34 |
+
# add a subsampling layer operation
|
35 |
+
|
36 |
+
# Conv4
|
37 |
+
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
38 |
+
model4+=[nn.ReLU(True),]
|
39 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
40 |
+
model4+=[nn.ReLU(True),]
|
41 |
+
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
42 |
+
model4+=[nn.ReLU(True),]
|
43 |
+
model4+=[norm_layer(512),]
|
44 |
+
|
45 |
+
# Conv5
|
46 |
+
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
47 |
+
model5+=[nn.ReLU(True),]
|
48 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
49 |
+
model5+=[nn.ReLU(True),]
|
50 |
+
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
51 |
+
model5+=[nn.ReLU(True),]
|
52 |
+
model5+=[norm_layer(512),]
|
53 |
+
|
54 |
+
# Conv6
|
55 |
+
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
56 |
+
model6+=[nn.ReLU(True),]
|
57 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
58 |
+
model6+=[nn.ReLU(True),]
|
59 |
+
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),]
|
60 |
+
model6+=[nn.ReLU(True),]
|
61 |
+
model6+=[norm_layer(512),]
|
62 |
+
|
63 |
+
# Conv7
|
64 |
+
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
65 |
+
model7+=[nn.ReLU(True),]
|
66 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
67 |
+
model7+=[nn.ReLU(True),]
|
68 |
+
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),]
|
69 |
+
model7+=[nn.ReLU(True),]
|
70 |
+
model7+=[norm_layer(512),]
|
71 |
+
|
72 |
+
# Conv7
|
73 |
+
model8up=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True)]
|
74 |
+
model3short8=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
75 |
+
|
76 |
+
model8=[nn.ReLU(True),]
|
77 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
78 |
+
model8+=[nn.ReLU(True),]
|
79 |
+
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),]
|
80 |
+
model8+=[nn.ReLU(True),]
|
81 |
+
model8+=[norm_layer(256),]
|
82 |
+
|
83 |
+
# Conv9
|
84 |
+
model9up=[nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
85 |
+
model2short9=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
86 |
+
# add the two feature maps above
|
87 |
+
|
88 |
+
model9=[nn.ReLU(True),]
|
89 |
+
model9+=[nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
90 |
+
model9+=[nn.ReLU(True),]
|
91 |
+
model9+=[norm_layer(128),]
|
92 |
+
|
93 |
+
# Conv10
|
94 |
+
model10up=[nn.ConvTranspose2d(128, 128, kernel_size=4, stride=2, padding=1, bias=True),]
|
95 |
+
model1short10=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),]
|
96 |
+
# add the two feature maps above
|
97 |
+
|
98 |
+
model10=[nn.ReLU(True),]
|
99 |
+
model10+=[nn.Conv2d(128, 128, kernel_size=3, dilation=1, stride=1, padding=1, bias=True),]
|
100 |
+
model10+=[nn.LeakyReLU(negative_slope=.2),]
|
101 |
+
|
102 |
+
# classification output
|
103 |
+
model_class=[nn.Conv2d(256, classes, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
104 |
+
|
105 |
+
# regression output
|
106 |
+
model_out=[nn.Conv2d(128, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=True),]
|
107 |
+
model_out+=[nn.Tanh()]
|
108 |
+
|
109 |
+
self.model1 = nn.Sequential(*model1)
|
110 |
+
self.model2 = nn.Sequential(*model2)
|
111 |
+
self.model3 = nn.Sequential(*model3)
|
112 |
+
self.model4 = nn.Sequential(*model4)
|
113 |
+
self.model5 = nn.Sequential(*model5)
|
114 |
+
self.model6 = nn.Sequential(*model6)
|
115 |
+
self.model7 = nn.Sequential(*model7)
|
116 |
+
self.model8up = nn.Sequential(*model8up)
|
117 |
+
self.model8 = nn.Sequential(*model8)
|
118 |
+
self.model9up = nn.Sequential(*model9up)
|
119 |
+
self.model9 = nn.Sequential(*model9)
|
120 |
+
self.model10up = nn.Sequential(*model10up)
|
121 |
+
self.model10 = nn.Sequential(*model10)
|
122 |
+
self.model3short8 = nn.Sequential(*model3short8)
|
123 |
+
self.model2short9 = nn.Sequential(*model2short9)
|
124 |
+
self.model1short10 = nn.Sequential(*model1short10)
|
125 |
+
|
126 |
+
self.model_class = nn.Sequential(*model_class)
|
127 |
+
self.model_out = nn.Sequential(*model_out)
|
128 |
+
|
129 |
+
self.upsample4 = nn.Sequential(*[nn.Upsample(scale_factor=4, mode='bilinear'),])
|
130 |
+
self.softmax = nn.Sequential(*[nn.Softmax(dim=1),])
|
131 |
+
|
132 |
+
def forward(self, input_A, input_B=None, mask_B=None):
|
133 |
+
if(input_B is None):
|
134 |
+
input_B = torch.cat((input_A*0, input_A*0), dim=1)
|
135 |
+
if(mask_B is None):
|
136 |
+
mask_B = input_A*0
|
137 |
+
|
138 |
+
conv1_2 = self.model1(torch.cat((self.normalize_l(input_A),self.normalize_ab(input_B),mask_B),dim=1))
|
139 |
+
conv2_2 = self.model2(conv1_2[:,:,::2,::2])
|
140 |
+
conv3_3 = self.model3(conv2_2[:,:,::2,::2])
|
141 |
+
conv4_3 = self.model4(conv3_3[:,:,::2,::2])
|
142 |
+
conv5_3 = self.model5(conv4_3)
|
143 |
+
conv6_3 = self.model6(conv5_3)
|
144 |
+
conv7_3 = self.model7(conv6_3)
|
145 |
+
|
146 |
+
conv8_up = self.model8up(conv7_3) + self.model3short8(conv3_3)
|
147 |
+
conv8_3 = self.model8(conv8_up)
|
148 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
149 |
+
conv9_3 = self.model9(conv9_up)
|
150 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
151 |
+
conv10_2 = self.model10(conv10_up)
|
152 |
+
out_reg = self.model_out(conv10_2)
|
153 |
+
|
154 |
+
conv9_up = self.model9up(conv8_3) + self.model2short9(conv2_2)
|
155 |
+
conv9_3 = self.model9(conv9_up)
|
156 |
+
conv10_up = self.model10up(conv9_3) + self.model1short10(conv1_2)
|
157 |
+
conv10_2 = self.model10(conv10_up)
|
158 |
+
out_reg = self.model_out(conv10_2)
|
159 |
+
|
160 |
+
return self.unnormalize_ab(out_reg)
|
161 |
+
|
162 |
+
def siggraph17(pretrained=True):
|
163 |
+
model = SIGGRAPHGenerator()
|
164 |
+
if(pretrained):
|
165 |
+
import torch.utils.model_zoo as model_zoo
|
166 |
+
model.load_state_dict(model_zoo.load_url('https://colorizers.s3.us-east-2.amazonaws.com/siggraph17-df00044c.pth',map_location='cpu',check_hash=True))
|
167 |
+
return model
|
168 |
+
|
colorizers/util.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
from skimage import color
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from IPython import embed
|
8 |
+
|
9 |
+
def load_img(img_path):
|
10 |
+
out_np = np.asarray(Image.open(img_path))
|
11 |
+
if(out_np.ndim==2):
|
12 |
+
out_np = np.tile(out_np[:,:,None],3)
|
13 |
+
return out_np
|
14 |
+
|
15 |
+
def resize_img(img, HW=(256,256), resample=3):
|
16 |
+
return np.asarray(Image.fromarray(img).resize((HW[1],HW[0]), resample=resample))
|
17 |
+
|
18 |
+
def preprocess_img(img_rgb_orig, HW=(256,256), resample=3):
|
19 |
+
# return original size L and resized L as torch Tensors
|
20 |
+
img_rgb_rs = resize_img(img_rgb_orig, HW=HW, resample=resample)
|
21 |
+
|
22 |
+
img_lab_orig = color.rgb2lab(img_rgb_orig)
|
23 |
+
img_lab_rs = color.rgb2lab(img_rgb_rs)
|
24 |
+
|
25 |
+
img_l_orig = img_lab_orig[:,:,0]
|
26 |
+
img_l_rs = img_lab_rs[:,:,0]
|
27 |
+
|
28 |
+
tens_orig_l = torch.Tensor(img_l_orig)[None,None,:,:]
|
29 |
+
tens_rs_l = torch.Tensor(img_l_rs)[None,None,:,:]
|
30 |
+
|
31 |
+
return (tens_orig_l, tens_rs_l)
|
32 |
+
|
33 |
+
def postprocess_tens(tens_orig_l, out_ab, mode='bilinear'):
|
34 |
+
# tens_orig_l 1 x 1 x H_orig x W_orig
|
35 |
+
# out_ab 1 x 2 x H x W
|
36 |
+
|
37 |
+
HW_orig = tens_orig_l.shape[2:]
|
38 |
+
HW = out_ab.shape[2:]
|
39 |
+
|
40 |
+
# call resize function if needed
|
41 |
+
if(HW_orig[0]!=HW[0] or HW_orig[1]!=HW[1]):
|
42 |
+
out_ab_orig = F.interpolate(out_ab, size=HW_orig, mode='bilinear')
|
43 |
+
else:
|
44 |
+
out_ab_orig = out_ab
|
45 |
+
|
46 |
+
out_lab_orig = torch.cat((tens_orig_l, out_ab_orig), dim=1)
|
47 |
+
return color.lab2rgb(out_lab_orig.data.cpu().numpy()[0,...].transpose((1,2,0)))
|
imgs/moon-captured-bw-lg.jpeg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
scikit-image
|
3 |
+
numpy
|
4 |
+
matplotlib
|
5 |
+
argparse
|
6 |
+
Pillow
|
7 |
+
ipython
|
8 |
+
gradio
|
9 |
+
black
|