Spaces:
Sleeping
Sleeping
Update config.py
Browse files
config.py
CHANGED
|
@@ -1,93 +1,62 @@
|
|
| 1 |
-
# Presentation of the challenge
|
| 2 |
-
context_markdown = """
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
"""
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
import
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
https://127.0.0.1:8888/?token=7de849a953befd20682d57ac33b3e6cd9024ca25eed2433
|
| 63 |
-
|
| 64 |
-
Then replace 127.0.0.1 with your I.P. e.g
|
| 65 |
-
https://1.222.333.4:8888/?token=7de849a953befd20682d57ac33b3e6cd9024ca25eed24336
|
| 66 |
-
"""
|
| 67 |
-
|
| 68 |
-
# Target on test (hidden from the participants)
|
| 69 |
-
Y_TEST_GOOGLE_PUBLIC_LINK = 'https://drive.google.com/file/d/1gQ3_ywJElpcBrewCFhVUM-fnV4SN62na/view?usp=sharing'
|
| 70 |
-
#------------------------------------------------------------------------------------------------------------------#
|
| 71 |
-
|
| 72 |
-
# Evaluation metric and content
|
| 73 |
-
from sklearn.metrics import f1_score
|
| 74 |
-
GREATER_IS_BETTER = True # example for ROC-AUC == True, for MSE == False, etc.
|
| 75 |
-
SKLEARN_SCORER = f1_score
|
| 76 |
-
SKLEARN_ADDITIONAL_PARAMETERS = {'average': 'weighted'}
|
| 77 |
-
|
| 78 |
-
evaluation_content = """
|
| 79 |
-
The predictions are evaluated according to the f1-score (weighted).
|
| 80 |
-
|
| 81 |
-
You can get it using
|
| 82 |
-
```python
|
| 83 |
-
from sklearn.metrics import f1_score
|
| 84 |
-
|
| 85 |
-
f1_score(y_train, y_pred_train, average='weighted')
|
| 86 |
-
```
|
| 87 |
-
More details [here](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html#sklearn.metrics.f1_score).
|
| 88 |
-
"""
|
| 89 |
-
#------------------------------------------------------------------------------------------------------------------#
|
| 90 |
-
|
| 91 |
-
# leaderboard benchmark score, will be displayed to everyone
|
| 92 |
-
BENCHMARK_SCORE = 0.2
|
| 93 |
#------------------------------------------------------------------------------------------------------------------#
|
|
|
|
| 1 |
+
# Presentation of the challenge
|
| 2 |
+
context_markdown = """
|
| 3 |
+
Manufacturing process feature selection and categorization
|
| 4 |
+
"""
|
| 5 |
+
content_markdown = """
|
| 6 |
+
Abstract: Data from a semi-conductor manufacturing process
|
| 7 |
+
Data Set Characteristics: Multivariate
|
| 8 |
+
Number of Instances: 1567
|
| 9 |
+
Area: Computer
|
| 10 |
+
Attribute Characteristics: Real
|
| 11 |
+
Number of Attributes: 591
|
| 12 |
+
Date Donated: 2008-11-19
|
| 13 |
+
Associated Tasks: Classification, Causal-Discovery
|
| 14 |
+
Missing Values? Yes
|
| 15 |
+
A complex modern semi-conductor manufacturing process is normally under consistent
|
| 16 |
+
surveillance via the monitoring of signals/variables collected from sensors and or
|
| 17 |
+
process measurement points. However, not all of these signals are equally valuable
|
| 18 |
+
in a specific monitoring system. The measured signals contain a combination of
|
| 19 |
+
useful information, irrelevant information as well as noise. It is often the case
|
| 20 |
+
that useful information is buried in the latter two. Engineers typically have a
|
| 21 |
+
much larger number of signals than are actually required. If we consider each type
|
| 22 |
+
of signal as a feature, then feature selection may be applied to identify the most
|
| 23 |
+
relevant signals. The Process Engineers may then use these signals to determine key
|
| 24 |
+
factors contributing to yield excursions downstream in the process. This will
|
| 25 |
+
enable an increase in process throughput, decreased time to learning and reduce the
|
| 26 |
+
per unit production costs.
|
| 27 |
+
"""
|
| 28 |
+
#------------------------------------------------------------------------------------------------------------------#
|
| 29 |
+
|
| 30 |
+
# Guide for the participants to get X_train, y_train and X_test
|
| 31 |
+
# The google link can be placed in your google drive => get the shared links and place them here.
|
| 32 |
+
data_instruction_commands = """
|
| 33 |
+
In order to get the data simply run the following command:
|
| 34 |
+
```python
|
| 35 |
+
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom.data', sep=' ', header=None)
|
| 36 |
+
```
|
| 37 |
+
Please ask the admin in order to get the target and the random seed used for train/test split.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
# Target on test (hidden from the participants)
|
| 41 |
+
Y_TEST_GOOGLE_PUBLIC_LINK = 'https://drive.google.com/file/d/1-3X4eN_xk00GY4Bf6YU4mGtvQ8s_MDCQ/view?usp=sharing'
|
| 42 |
+
#------------------------------------------------------------------------------------------------------------------#
|
| 43 |
+
|
| 44 |
+
# Evaluation metric and content
|
| 45 |
+
from sklearn.metrics import precision_recall_curve as prauc
|
| 46 |
+
GREATER_IS_BETTER = True # example for ROC-AUC == True, for MSE == False, etc.
|
| 47 |
+
SKLEARN_SCORER = prauc
|
| 48 |
+
SKLEARN_ADDITIONAL_PARAMETERS = {}
|
| 49 |
+
|
| 50 |
+
evaluation_content = """
|
| 51 |
+
The predictions are evaluated according to the PR-AUC score.
|
| 52 |
+
You can get it using
|
| 53 |
+
```python
|
| 54 |
+
from sklearn.metrics import average_precision_score as prauc
|
| 55 |
+
```
|
| 56 |
+
More details [here](https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html).
|
| 57 |
+
"""
|
| 58 |
+
#------------------------------------------------------------------------------------------------------------------#
|
| 59 |
+
|
| 60 |
+
# leaderboard benchmark score, will be displayed to everyone
|
| 61 |
+
BENCHMARK_SCORE = 0.7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
#------------------------------------------------------------------------------------------------------------------#
|