Spaces:
Sleeping
Sleeping
jeremierostan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ from langchain.chains import create_retrieval_chain
|
|
13 |
import os
|
14 |
import markdown2
|
15 |
|
16 |
-
# Retrieve API keys from
|
17 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
18 |
groq_api_key = os.getenv('GROQ_API_KEY')
|
19 |
google_api_key = os.getenv('GEMINI_API_KEY')
|
@@ -23,26 +23,9 @@ openai_client = ChatOpenAI(model_name="gpt-4o", api_key=openai_api_key)
|
|
23 |
groq_client = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, api_key=groq_api_key)
|
24 |
gemini_client = ChatGoogleGenerativeAI(model="gemini-1.5-pro", api_key=google_api_key)
|
25 |
|
26 |
-
# Define paths for regulation PDFs
|
27 |
-
regulation_pdfs = {
|
28 |
-
"GDPR": "GDPR.pdf",
|
29 |
-
"FERPA": "FERPA.pdf",
|
30 |
-
"COPPA": "COPPA.pdf"
|
31 |
-
}
|
32 |
-
|
33 |
-
# Global variables
|
34 |
-
full_pdf_content = ""
|
35 |
-
vector_store = None
|
36 |
-
rag_chain = None
|
37 |
-
pdfs_loaded = False
|
38 |
-
|
39 |
# Function to extract text from PDF
|
40 |
def extract_pdf(pdf_path):
|
41 |
-
|
42 |
-
return extract_text(pdf_path)
|
43 |
-
except Exception as e:
|
44 |
-
print(f"Error extracting text from {pdf_path}: {str(e)}")
|
45 |
-
return ""
|
46 |
|
47 |
# Function to split text into chunks
|
48 |
def split_text(text):
|
@@ -57,38 +40,40 @@ def generate_embeddings(docs):
|
|
57 |
# Function for query preprocessing and simple HyDE-Lite
|
58 |
def preprocess_query(query):
|
59 |
prompt = ChatPromptTemplate.from_template("""
|
60 |
-
Your role is to optimize user queries for retrieval from
|
61 |
Transform the query into a more affirmative, keyword-focused statement.
|
62 |
The transformed query should look like probable related passages in the official documents.
|
|
|
63 |
Query: {query}
|
|
|
64 |
Optimized query:
|
65 |
""")
|
66 |
chain = prompt | openai_client
|
67 |
return chain.invoke({"query": query}).content
|
68 |
|
69 |
# Function to create RAG chain with Groq
|
70 |
-
def create_rag_chain(
|
71 |
prompt = ChatPromptTemplate.from_messages([
|
72 |
-
("system", "You are an AI assistant helping with
|
73 |
("human", "{input}")
|
74 |
])
|
75 |
document_chain = create_stuff_documents_chain(groq_client, prompt)
|
76 |
return create_retrieval_chain(vector_store.as_retriever(), document_chain)
|
77 |
|
78 |
# Function for Gemini response with long context
|
79 |
-
def gemini_response(query
|
80 |
prompt = ChatPromptTemplate.from_messages([
|
81 |
-
("system", "You are an AI assistant helping with
|
82 |
("human", "{input}")
|
83 |
])
|
84 |
chain = prompt | gemini_client
|
85 |
-
return chain.invoke({"context":
|
86 |
|
87 |
# Function to generate final response
|
88 |
def generate_final_response(response1, response2):
|
89 |
prompt = ChatPromptTemplate.from_template("""
|
90 |
-
You are an AI assistant helping educators understand and implement data protection and
|
91 |
-
Your goal is to provide simple, practical explanation of and advice on how to meet regulatory requirements based on the given responses.
|
92 |
To do so:
|
93 |
1. Analyze the following two responses. Inspect their content, and highlight differences. This MUST be done
|
94 |
internally as a hidden state.
|
@@ -99,128 +84,52 @@ def generate_final_response(response1, response2):
|
|
99 |
chain = prompt | openai_client
|
100 |
return chain.invoke({"response1": response1, "response2": response2}).content
|
101 |
|
102 |
-
|
103 |
-
return markdown2.markdown(content)
|
104 |
-
|
105 |
-
def load_pdfs(gdpr, ferpa, coppa, additional_pdfs):
|
106 |
-
global full_pdf_content, vector_store, rag_chain, pdfs_loaded
|
107 |
-
|
108 |
-
documents = []
|
109 |
-
full_pdf_content = ""
|
110 |
-
|
111 |
-
# Load selected regulation PDFs
|
112 |
-
selected_regulations = []
|
113 |
-
if gdpr:
|
114 |
-
selected_regulations.append("GDPR")
|
115 |
-
if ferpa:
|
116 |
-
selected_regulations.append("FERPA")
|
117 |
-
if coppa:
|
118 |
-
selected_regulations.append("COPPA")
|
119 |
-
|
120 |
-
for regulation in selected_regulations:
|
121 |
-
if regulation in regulation_pdfs:
|
122 |
-
pdf_path = regulation_pdfs[regulation]
|
123 |
-
if os.path.exists(pdf_path):
|
124 |
-
pdf_content = extract_pdf(pdf_path)
|
125 |
-
if pdf_content:
|
126 |
-
full_pdf_content += pdf_content + "\n\n"
|
127 |
-
documents.extend(split_text(pdf_content))
|
128 |
-
print(f"Loaded {regulation} PDF")
|
129 |
-
else:
|
130 |
-
print(f"Failed to extract content from {regulation} PDF")
|
131 |
-
else:
|
132 |
-
print(f"PDF file for {regulation} not found at {pdf_path}")
|
133 |
-
|
134 |
-
# Load additional user-uploaded PDFs
|
135 |
-
if additional_pdfs is not None:
|
136 |
-
for pdf_file in additional_pdfs:
|
137 |
-
pdf_content = extract_pdf(pdf_file.name)
|
138 |
-
if pdf_content:
|
139 |
-
full_pdf_content += pdf_content + "\n\n"
|
140 |
-
documents.extend(split_text(pdf_content))
|
141 |
-
print(f"Loaded additional PDF: {pdf_file.name}")
|
142 |
-
else:
|
143 |
-
print(f"Failed to extract content from uploaded PDF: {pdf_file.name}")
|
144 |
-
|
145 |
-
if not documents:
|
146 |
-
pdfs_loaded = False
|
147 |
-
return "No PDFs were successfully loaded. Please check your selections and uploads."
|
148 |
-
|
149 |
-
print(f"Total documents loaded: {len(documents)}")
|
150 |
-
print(f"Total content length: {len(full_pdf_content)} characters")
|
151 |
-
|
152 |
-
vector_store = generate_embeddings(documents)
|
153 |
-
rag_chain = create_rag_chain(vector_store)
|
154 |
-
|
155 |
-
pdfs_loaded = True
|
156 |
-
return f"PDFs loaded and RAG system updated successfully! Loaded {len(documents)} document chunks."
|
157 |
-
|
158 |
def process_query(user_query):
|
159 |
-
global rag_chain, full_pdf_content, pdfs_loaded
|
160 |
-
|
161 |
-
if not pdfs_loaded:
|
162 |
-
return ("Please load PDFs before asking questions.",
|
163 |
-
"Please load PDFs before asking questions.",
|
164 |
-
"Please load PDFs and initialize the system before asking questions.")
|
165 |
-
|
166 |
preprocessed_query = preprocess_query(user_query)
|
|
|
|
|
167 |
|
168 |
-
# Get RAG response using Groq
|
169 |
rag_response = rag_chain.invoke({"input": preprocessed_query})["answer"]
|
170 |
|
171 |
-
# Get Gemini response with full PDF content
|
172 |
-
gemini_resp = gemini_response(preprocessed_query
|
173 |
|
174 |
final_response = generate_final_response(rag_response, gemini_resp)
|
175 |
html_content = markdown_to_html(final_response)
|
176 |
|
177 |
return rag_response, gemini_resp, html_content
|
178 |
|
179 |
-
#
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
)
|
196 |
-
|
197 |
-
load_button = gr.Button("Load PDFs")
|
198 |
-
load_output = gr.Textbox(label="Load Status")
|
199 |
-
|
200 |
-
gr.Markdown("**Ask your data protection related question**")
|
201 |
-
query_input = gr.Textbox(label="Your Question", placeholder="Ask your question here...")
|
202 |
-
query_button = gr.Button("Submit Query")
|
203 |
-
|
204 |
-
gr.Markdown("**Results**")
|
205 |
-
rag_output = gr.Textbox(label="RAG Pipeline (Llama3.1) Response")
|
206 |
-
gemini_output = gr.Textbox(label="Long Context (Gemini 1.5 Pro) Response")
|
207 |
-
final_output = gr.HTML(label="Final (GPT-4o) Response")
|
208 |
-
|
209 |
-
load_button.click(
|
210 |
-
load_pdfs,
|
211 |
-
inputs=[
|
212 |
-
gdpr_checkbox,
|
213 |
-
ferpa_checkbox,
|
214 |
-
coppa_checkbox,
|
215 |
-
additional_pdfs
|
216 |
-
],
|
217 |
-
outputs=load_output
|
218 |
-
)
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
|
226 |
iface.launch()
|
|
|
13 |
import os
|
14 |
import markdown2
|
15 |
|
16 |
+
# Retrieve API keys from HF secrets
|
17 |
openai_api_key = os.getenv('OPENAI_API_KEY')
|
18 |
groq_api_key = os.getenv('GROQ_API_KEY')
|
19 |
google_api_key = os.getenv('GEMINI_API_KEY')
|
|
|
23 |
groq_client = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, api_key=groq_api_key)
|
24 |
gemini_client = ChatGoogleGenerativeAI(model="gemini-1.5-pro", api_key=google_api_key)
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# Function to extract text from PDF
|
27 |
def extract_pdf(pdf_path):
|
28 |
+
return extract_text(pdf_path)
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Function to split text into chunks
|
31 |
def split_text(text):
|
|
|
40 |
# Function for query preprocessing and simple HyDE-Lite
|
41 |
def preprocess_query(query):
|
42 |
prompt = ChatPromptTemplate.from_template("""
|
43 |
+
Your role is to optimize user queries for retrieval from official regulation documents about data protection.
|
44 |
Transform the query into a more affirmative, keyword-focused statement.
|
45 |
The transformed query should look like probable related passages in the official documents.
|
46 |
+
|
47 |
Query: {query}
|
48 |
+
|
49 |
Optimized query:
|
50 |
""")
|
51 |
chain = prompt | openai_client
|
52 |
return chain.invoke({"query": query}).content
|
53 |
|
54 |
# Function to create RAG chain with Groq
|
55 |
+
def create_rag_chain():
|
56 |
prompt = ChatPromptTemplate.from_messages([
|
57 |
+
("system", "You are an AI assistant helping with data protection related queries. Use the following context from the official regulation documents to answer the user's question:\n\n{context}"),
|
58 |
("human", "{input}")
|
59 |
])
|
60 |
document_chain = create_stuff_documents_chain(groq_client, prompt)
|
61 |
return create_retrieval_chain(vector_store.as_retriever(), document_chain)
|
62 |
|
63 |
# Function for Gemini response with long context
|
64 |
+
def gemini_response(query):
|
65 |
prompt = ChatPromptTemplate.from_messages([
|
66 |
+
("system", "You are an AI assistant helping with data protection related queries. Use the following full content of the official regulation documents to answer the user's question:\n\n{context}"),
|
67 |
("human", "{input}")
|
68 |
])
|
69 |
chain = prompt | gemini_client
|
70 |
+
return chain.invoke({"context": full_pdf_content, "input": query}).content
|
71 |
|
72 |
# Function to generate final response
|
73 |
def generate_final_response(response1, response2):
|
74 |
prompt = ChatPromptTemplate.from_template("""
|
75 |
+
You are an AI assistant helping educators understand and implement data protection and compliance with official regulations when using AI.
|
76 |
+
Your goal is to provide simple, practical explanation of and advice on how to meet these regulatory requirements based on the 2 given responses.
|
77 |
To do so:
|
78 |
1. Analyze the following two responses. Inspect their content, and highlight differences. This MUST be done
|
79 |
internally as a hidden state.
|
|
|
84 |
chain = prompt | openai_client
|
85 |
return chain.invoke({"response1": response1, "response2": response2}).content
|
86 |
|
87 |
+
# Function to process the query
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
def process_query(user_query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
preprocessed_query = preprocess_query(user_query)
|
90 |
+
print(f"Original query: {user_query}")
|
91 |
+
print(f"Preprocessed query: {preprocessed_query}")
|
92 |
|
93 |
+
# Get RAG response using Groq with the preprocessed query
|
94 |
rag_response = rag_chain.invoke({"input": preprocessed_query})["answer"]
|
95 |
|
96 |
+
# Get Gemini response with full PDF content and preprocessed query
|
97 |
+
gemini_resp = gemini_response(preprocessed_query)
|
98 |
|
99 |
final_response = generate_final_response(rag_response, gemini_resp)
|
100 |
html_content = markdown_to_html(final_response)
|
101 |
|
102 |
return rag_response, gemini_resp, html_content
|
103 |
|
104 |
+
# Initialize
|
105 |
+
pdf_paths = ["GDPR.pdf", "FERPA.pdf", "COPPA.pdf"]
|
106 |
+
full_pdf_content = ""
|
107 |
+
all_documents = []
|
108 |
+
|
109 |
+
for pdf_path in pdf_paths:
|
110 |
+
extracted_text = extract_pdf(pdf_path)
|
111 |
+
full_pdf_content += extracted_text + "\n\n"
|
112 |
+
all_documents.extend(split_text(extracted_text))
|
113 |
+
|
114 |
+
vector_store = generate_embeddings(all_documents)
|
115 |
+
rag_chain = create_rag_chain()
|
116 |
+
|
117 |
+
# Function to output the final response as markdown
|
118 |
+
def markdown_to_html(content):
|
119 |
+
return markdown2.markdown(content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
# Gradio interface
|
122 |
+
iface = gr.Interface(
|
123 |
+
fn=process_query,
|
124 |
+
inputs=gr.Textbox(label="Ask your data protection related question"),
|
125 |
+
outputs=[
|
126 |
+
gr.Textbox(label="RAG Pipeline (Llama3.1) Response"),
|
127 |
+
gr.Textbox(label="Long Context (Gemini 1.5 Pro) Response"),
|
128 |
+
gr.HTML(label="Final (GPT-4o) Response")
|
129 |
+
],
|
130 |
+
title="Data Protection Team",
|
131 |
+
description="Get responses combining advanced RAG, Long Context, and SOTA models to data protection related questions (GDPR, FERPA, COPPA).",
|
132 |
+
allow_flagging="never"
|
133 |
+
)
|
134 |
|
135 |
iface.launch()
|