jeraldflowers commited on
Commit
f45daac
1 Parent(s): 4a1ab12

first commit

Browse files
Files changed (2) hide show
  1. app.py +56 -0
  2. utils.py +14 -0
app.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ from utils import load_model, genera
4
+
5
+ ## Mean page
6
+ st.title("Butterflies Generator")
7
+ st.write("This is a Light GAN model trained and used by me")
8
+
9
+ ## Sidebar
10
+ st.sidebar.subheader("This butterfly not is real, can you believe it?")
11
+ st.sidebar.image("assets/logo.png", width=200)
12
+ st.sidebar.caption("Demo created live")
13
+
14
+ ## Load model
15
+ repo_id = "ceyda/butterfly_cropped_uniq1K_512"
16
+ model_gan = load_model(repo_id)
17
+
18
+ ## We generated four butterflies
19
+ n_butterflies = 4
20
+
21
+ def run():
22
+ with st.spinner("Generating, wait a bit..."):
23
+ ims = genera(model_gan, n_butterflies)
24
+ st.session_state["ims"] = ims
25
+
26
+ if "ims" not in st.session_state:
27
+ st.session_state["ims"] = None
28
+ run()
29
+
30
+ ims = st.session_state["ims"]
31
+
32
+ run_button = st.button(
33
+ "Generate",
34
+ on_click=run,
35
+ help="We are in fly"
36
+ )
37
+
38
+ if ims is not None:
39
+ cols = st.columns(n_butterflies)
40
+ for j, im in enumerate(ims):
41
+ i = j % n_butterflies
42
+ cols[i].image(im, use_column_width=True)
43
+
44
+
45
+
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
utils.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from huggan.pytorch.lightweight_gan.lightweight_gan import LightweightGAN
4
+
5
+ def load_model(model_name="ceyda/butterfly_cropper_uniq1K_512", model_version=None):
6
+ gan = LightweightGAN.from_pretrained(model_name, version=model_version)
7
+ gan.eval()
8
+ return gan
9
+
10
+ def genera(gan, batch_size=1):
11
+ with torch.no_grad():
12
+ ims = gan.G(torch.randn(batch_size, gan.latent_dim)).clamp_(0.0, 1.0) * 255
13
+ ims = ims.permute(0,2,3,1).detach().cpu().numpy().astype(np.uint8)
14
+ return ims