Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
from transformers.utils.hub import move_cache
|
6 |
import torch
|
|
|
7 |
|
8 |
move_cache()
|
9 |
|
@@ -11,17 +12,28 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
torch.cuda.max_memory_allocated(device=device)
|
14 |
-
pipe =
|
|
|
15 |
pipe.enable_xformers_memory_efficient_attention()
|
16 |
pipe = pipe.to(device)
|
17 |
else:
|
18 |
-
pipe =
|
19 |
pipe = pipe.to(device)
|
20 |
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
MAX_IMAGE_SIZE = 1024
|
23 |
|
24 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
if randomize_seed:
|
27 |
seed = random.randint(0, MAX_SEED)
|
@@ -29,10 +41,11 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
29 |
generator = torch.Generator().manual_seed(seed)
|
30 |
|
31 |
image = pipe(
|
|
|
32 |
prompt = prompt,
|
33 |
negative_prompt = negative_prompt,
|
34 |
guidance_scale = guidance_scale,
|
35 |
-
|
36 |
width = width,
|
37 |
height = height,
|
38 |
generator = generator
|
@@ -65,6 +78,10 @@ with gr.Blocks(css=css) as demo:
|
|
65 |
# Text-to-Image Gradio Template
|
66 |
Currently running on {power_device}.
|
67 |
""")
|
|
|
|
|
|
|
|
|
68 |
|
69 |
with gr.Row():
|
70 |
|
@@ -127,10 +144,10 @@ with gr.Blocks(css=css) as demo:
|
|
127 |
value=0.0,
|
128 |
)
|
129 |
|
130 |
-
|
131 |
-
label="
|
132 |
minimum=1,
|
133 |
-
maximum=
|
134 |
step=1,
|
135 |
value=2,
|
136 |
)
|
@@ -142,7 +159,7 @@ with gr.Blocks(css=css) as demo:
|
|
142 |
|
143 |
run_button.click(
|
144 |
fn = infer,
|
145 |
-
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale,
|
146 |
outputs = [result]
|
147 |
)
|
148 |
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
from diffusers import DiffusionPipeline, StableDiffusionImg2ImgPipeline
|
5 |
from transformers.utils.hub import move_cache
|
6 |
import torch
|
7 |
+
from PIL import Image
|
8 |
|
9 |
move_cache()
|
10 |
|
|
|
12 |
|
13 |
if torch.cuda.is_available():
|
14 |
torch.cuda.max_memory_allocated(device=device)
|
15 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch.float16)
|
16 |
+
#pipe = DiffusionPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch.float16, variant="fp16")
|
17 |
pipe.enable_xformers_memory_efficient_attention()
|
18 |
pipe = pipe.to(device)
|
19 |
else:
|
20 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained("Envvi/Inkpunk-Diffusion", torch_dtype=torch.float16)
|
21 |
pipe = pipe.to(device)
|
22 |
|
23 |
MAX_SEED = np.iinfo(np.int32).max
|
24 |
MAX_IMAGE_SIZE = 1024
|
25 |
|
26 |
+
def generate_image(uploaded_image):
|
27 |
+
# Open the uploaded image
|
28 |
+
image = Image.open(uploaded_image)
|
29 |
+
|
30 |
+
# Run the image through the Stable Diffusion pipeline
|
31 |
+
with torch.no_grad():
|
32 |
+
output = pipe(image, guidance_scale=7.5)["sample"][0]
|
33 |
+
|
34 |
+
return output
|
35 |
+
|
36 |
+
def infer(base_img, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, strength):
|
37 |
|
38 |
if randomize_seed:
|
39 |
seed = random.randint(0, MAX_SEED)
|
|
|
41 |
generator = torch.Generator().manual_seed(seed)
|
42 |
|
43 |
image = pipe(
|
44 |
+
image = base_img,
|
45 |
prompt = prompt,
|
46 |
negative_prompt = negative_prompt,
|
47 |
guidance_scale = guidance_scale,
|
48 |
+
strength = strength,
|
49 |
width = width,
|
50 |
height = height,
|
51 |
generator = generator
|
|
|
78 |
# Text-to-Image Gradio Template
|
79 |
Currently running on {power_device}.
|
80 |
""")
|
81 |
+
|
82 |
+
|
83 |
+
with gr.Row():
|
84 |
+
base_img = gr.Interface(fn=generate_image, inputs=gr.inputs.Image(type="pil"), outputs=gr.outputs.Image(type="pil"))
|
85 |
|
86 |
with gr.Row():
|
87 |
|
|
|
144 |
value=0.0,
|
145 |
)
|
146 |
|
147 |
+
strength = gr.Slider(
|
148 |
+
label="strength",
|
149 |
minimum=1,
|
150 |
+
maximum=10,
|
151 |
step=1,
|
152 |
value=2,
|
153 |
)
|
|
|
159 |
|
160 |
run_button.click(
|
161 |
fn = infer,
|
162 |
+
inputs = [base_img, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, strength],
|
163 |
outputs = [result]
|
164 |
)
|
165 |
|