|
import gradio as gr |
|
import whisper |
|
|
|
model = whisper.load_model("base") |
|
|
|
|
|
|
|
|
|
def inference(audio): |
|
result = model.transcribe(audio) |
|
print(result["text"]) |
|
return result["text"] |
|
|
|
|
|
title="Whisper" |
|
|
|
description="Whisper is a general-purpose speech recognition model. It is trained on a large dataset of diverse audio and is also a multi-task model that can perform multilingual speech recognition as well as speech translation and language identification." |
|
|
|
css = """ |
|
.gradio-container { |
|
font-family: 'IBM Plex Sans', sans-serif; |
|
} |
|
.gr-button { |
|
color: white; |
|
border-color: black; |
|
background: black; |
|
} |
|
input[type='range'] { |
|
accent-color: black; |
|
} |
|
.dark input[type='range'] { |
|
accent-color: #dfdfdf; |
|
} |
|
.container { |
|
max-width: 730px; |
|
margin: auto; |
|
padding-top: 1.5rem; |
|
} |
|
#gallery { |
|
min-height: 22rem; |
|
margin-bottom: 15px; |
|
margin-left: auto; |
|
margin-right: auto; |
|
border-bottom-right-radius: .5rem !important; |
|
border-bottom-left-radius: .5rem !important; |
|
} |
|
#gallery>div>.h-full { |
|
min-height: 20rem; |
|
} |
|
.details:hover { |
|
text-decoration: underline; |
|
} |
|
.gr-button { |
|
white-space: nowrap; |
|
} |
|
.gr-button:focus { |
|
border-color: rgb(147 197 253 / var(--tw-border-opacity)); |
|
outline: none; |
|
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); |
|
--tw-border-opacity: 1; |
|
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); |
|
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); |
|
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); |
|
--tw-ring-opacity: .5; |
|
} |
|
.footer { |
|
margin-bottom: 45px; |
|
margin-top: 35px; |
|
text-align: center; |
|
border-bottom: 1px solid #e5e5e5; |
|
} |
|
.footer>p { |
|
font-size: .8rem; |
|
display: inline-block; |
|
padding: 0 10px; |
|
transform: translateY(10px); |
|
background: white; |
|
} |
|
.dark .footer { |
|
border-color: #303030; |
|
} |
|
.dark .footer>p { |
|
background: #0b0f19; |
|
} |
|
.prompt h4{ |
|
margin: 1.25em 0 .25em 0; |
|
font-weight: bold; |
|
font-size: 115%; |
|
} |
|
""" |
|
|
|
block = gr.Blocks(css=css) |
|
|
|
|
|
|
|
with block: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center; max-width: 650px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
margin-bottom: 10px; |
|
margin-left: 220px; |
|
justify-content: center; |
|
" |
|
> |
|
<a href="https://github.com/PaddlePaddle/PaddleHub"><img src="https://user-images.githubusercontent.com/22424850/187387422-f6c9ccab-7fda-416e-a24d-7d6084c46f67.jpg" alt="Paddlehub" width="40%"></a> |
|
</div> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
margin-bottom: 10px; |
|
justify-content: center; |
|
"> |
|
<a href="https://github.com/PaddlePaddle/PaddleHub"><h1 style="font-weight: 900; margin-bottom: 7px;"> |
|
ERNIE-ViLG Demo |
|
</h1></a> |
|
</div> |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
ERNIE-ViLG is a state-of-the-art text-to-image model that generates |
|
images from Chinese text. |
|
</p> |
|
<a href="https://github.com/PaddlePaddle/PaddleHub"><img src="https://user-images.githubusercontent.com/22424850/188184795-98605a22-9af2-4106-827b-e58548f8892f.png" alt="star Paddlehub" width="100%"></a> |
|
</div> |
|
""" |
|
) |
|
with gr.Group(): |
|
with gr.Box(): |
|
with gr.Row().style(mobile_collapse=False, equal_height=True): |
|
audio = gr.Audio( |
|
label="Input Audio", |
|
show_label=False, |
|
).style( |
|
border=(True, False, True, True), |
|
rounded=(True, False, False, True), |
|
container=False, |
|
) |
|
|
|
btn = gr.Button("Transcribe").style( |
|
margin=False, |
|
rounded=(False, True, True, False), |
|
) |
|
text = gr.Textbox( |
|
).style(height="auto") |
|
|
|
|
|
|
|
|
|
btn.click(inference, inputs=[audio], outputs=[text]) |
|
|
|
gr.HTML(''' |
|
<div class="footer"> |
|
<p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> and <a href="https://wenxin.baidu.com" style="text-decoration: underline;" target="_blank">文心大模型</a> - Gradio Demo by 🤗 Hugging Face |
|
</p> |
|
</div> |
|
''') |
|
|
|
block.launch() |