jennysun's picture
Duplicate from gligen/demo
81ba850
raw
history blame
1.33 kB
import torch
import torch.nn as nn
#import pytorch_lightning as pl
import torch.nn.functional as F
from contextlib import contextmanager
# from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from ldm.util import instantiate_from_config
class AutoencoderKL(nn.Module):
def __init__(self,
ddconfig,
embed_dim,
scale_factor=1
):
super().__init__()
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
assert ddconfig["double_z"]
self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
self.scale_factor = scale_factor
def encode(self, x):
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior.sample() * self.scale_factor
def decode(self, z):
z = 1. / self.scale_factor * z
z = self.post_quant_conv(z)
dec = self.decoder(z)
return dec