jeffscoolusername's picture
Duplicate from mikeee/Wizard-Vicuna-7B-Uncensored-GGML
6532237
"""Run codes."""
# pylint: disable=line-too-long, broad-exception-caught, invalid-name, missing-function-docstring, too-many-instance-attributes, missing-class-docstring
# ruff: noqa: E501
import os
import time
from dataclasses import asdict, dataclass
from pathlib import Path
from types import SimpleNamespace
from urllib.parse import urlparse
import gradio as gr
import psutil
from about_time import about_time
# from ctransformers import AutoConfig, AutoModelForCausalLM
from ctransformers import AutoModelForCausalLM
from huggingface_hub import hf_hub_download
from loguru import logger
filename_list = [
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q2_K.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_L.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_M.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q3_K_S.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_0.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_1.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_M.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_S.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_0.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_1.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_K_M.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q5_K_S.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q6_K.bin",
"Wizard-Vicuna-7B-Uncensored.ggmlv3.q8_0.bin",
]
URL = "https://huggingface.co/TheBloke/Wizard-Vicuna-7B-Uncensored-GGML/raw/main/Wizard-Vicuna-7B-Uncensored.ggmlv3.q4_K_M.bin" # 4.05G
MODEL_FILENAME = Path(URL).name
MODEL_FILENAME = filename_list[0] # q2_K 4.05G
MODEL_FILENAME = filename_list[5] # q4_1 4.21
REPO_ID = "/".join(
urlparse(URL).path.strip("/").split("/")[:2]
) # TheBloke/Wizard-Vicuna-7B-Uncensored-GGML
DESTINATION_FOLDER = "models"
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
ns = SimpleNamespace(
response="",
generator=[],
)
default_system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers."
user_prefix = "[user]: "
assistant_prefix = "[assistant]: "
def predict_str(prompt, bot): # bot is in fact bot_history
# logger.debug(f"{prompt=}, {bot=}, {timeout=}")
if bot is None:
bot = []
logger.debug(f"{prompt=}, {bot=}")
try:
# user_prompt = prompt
generator = generate(
LLM,
GENERATION_CONFIG,
system_prompt=default_system_prompt,
user_prompt=prompt.strip(),
)
ns.generator = generator # for .then
except Exception as exc:
logger.error(exc)
# bot.append([prompt, f"{response} {_}"])
# return prompt, bot
_ = bot + [[prompt, None]]
logger.debug(f"{prompt=}, {_=}")
return prompt, _
def bot_str(bot):
if bot:
bot[-1][1] = ""
else:
bot = [["Something is wrong", ""]]
print(assistant_prefix, end=" ", flush=True)
response = ""
flag = 1
then = time.time()
for word in ns.generator:
# record first response time
if flag:
logger.debug(f"\t {time.time() - then:.1f}s")
flag = 0
print(word, end="", flush=True)
# print(word, flush=True) # vertical stream
response += word
bot[-1][1] = response
yield bot
def predict(prompt, bot):
# logger.debug(f"{prompt=}, {bot=}, {timeout=}")
logger.debug(f"{prompt=}, {bot=}")
ns.response = ""
then = time.time()
with about_time() as atime: # type: ignore
try:
# user_prompt = prompt
generator = generate(
LLM,
GENERATION_CONFIG,
system_prompt=default_system_prompt,
user_prompt=prompt.strip(),
)
ns.generator = generator # for .then
print(assistant_prefix, end=" ", flush=True)
response = ""
buff.update(value="diggin...")
flag = 1
for word in generator:
# record first response time
if flag:
logger.debug(f"\t {time.time() - then:.1f}s")
flag = 0
# print(word, end="", flush=True)
print(word, flush=True) # vertical stream
response += word
ns.response = response
buff.update(value=response)
print("")
logger.debug(f"{response=}")
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
# bot = {"inputs": [response]}
_ = (
f"(time elapsed: {atime.duration_human}, " # type: ignore
f"{atime.duration/(len(prompt) + len(response)):.1f}s/char)" # type: ignore
)
bot.append([prompt, f"{response} {_}"])
return prompt, bot
def predict_api(prompt):
logger.debug(f"{prompt=}")
ns.response = ""
try:
# user_prompt = prompt
_ = GenerationConfig(
temperature=0.2,
top_k=0,
top_p=0.9,
repetition_penalty=1.0,
max_new_tokens=512, # adjust as needed
seed=42,
reset=False, # reset history (cache)
stream=True, # TODO stream=False and generator
threads=os.cpu_count() // 2, # type: ignore # adjust for your CPU
stop=["<|im_end|>", "|<"],
)
# TODO: stream does not make sense in api?
generator = generate(
LLM, _, system_prompt=default_system_prompt, user_prompt=prompt.strip()
)
print(assistant_prefix, end=" ", flush=True)
response = ""
buff.update(value="diggin...")
for word in generator:
print(word, end="", flush=True)
response += word
ns.response = response
buff.update(value=response)
print("")
logger.debug(f"{response=}")
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
# bot = {"inputs": [response]}
# bot = [(prompt, response)]
return response
def download_quant(destination_folder: str, repo_id: str, model_filename: str):
local_path = os.path.abspath(destination_folder)
return hf_hub_download(
repo_id=repo_id,
filename=model_filename,
local_dir=local_path,
local_dir_use_symlinks=True,
)
@dataclass
class GenerationConfig:
temperature: float
top_k: int
top_p: float
repetition_penalty: float
max_new_tokens: int
seed: int
reset: bool
stream: bool
threads: int
stop: list[str]
def format_prompt(system_prompt: str, user_prompt: str):
"""Format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py."""
# TODO: fix prompts
system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n"
assistant_prompt = "<|im_start|>assistant\n"
return f"{system_prompt}{user_prompt}{assistant_prompt}"
def generate(
llm: AutoModelForCausalLM,
generation_config: GenerationConfig,
system_prompt: str = default_system_prompt,
user_prompt: str = "",
):
"""Run model inference, will return a Generator if streaming is true."""
# if not user_prompt.strip():
return llm(
format_prompt(
system_prompt,
user_prompt,
),
**asdict(generation_config),
)
# if "mpt" in model_filename:
# config = AutoConfig.from_pretrained("mosaicml/mpt-30b-cha t", context_length=8192)
# llm = AutoModelForCausalLM.from_pretrained(
# os.path.abspath(f"models/{model_filename}"),
# model_type="mpt",
# config=config,
# )
# https://huggingface.co/spaces/matthoffner/wizardcoder-ggml/blob/main/main.py
_ = """
llm = AutoModelForCausalLM.from_pretrained(
"TheBloke/WizardCoder-15B-1.0-GGML",
model_file="WizardCoder-15B-1.0.ggmlv3.q4_0.bin",
model_type="starcoder",
threads=8
)
# """
logger.info(f"start dl, {REPO_ID=}, {MODEL_FILENAME=}, {DESTINATION_FOLDER=}")
download_quant(DESTINATION_FOLDER, REPO_ID, MODEL_FILENAME)
logger.info("done dl")
logger.debug(f"{os.cpu_count()=} {psutil.cpu_count(logical=False)=}")
cpu_count = os.cpu_count() // 2 # type: ignore
cpu_count = psutil.cpu_count(logical=False)
logger.debug(f"{cpu_count=}")
logger.info("load llm")
_ = Path("models", MODEL_FILENAME).absolute().as_posix()
logger.debug(f"model_file: {_}, exists: {Path(_).exists()}")
LLM = AutoModelForCausalLM.from_pretrained(
# "TheBloke/WizardCoder-15B-1.0-GGML",
REPO_ID, # DESTINATION_FOLDER, # model_path_or_repo_id: str required
model_file=_,
model_type="llama", # "starcoder", AutoConfig.from_pretrained(REPO_ID)
threads=cpu_count,
)
logger.info("done load llm")
GENERATION_CONFIG = GenerationConfig(
temperature=0.2,
top_k=0,
top_p=0.9,
repetition_penalty=1.0,
max_new_tokens=512, # adjust as needed
seed=42,
reset=False, # reset history (cache)
stream=True, # streaming per word/token
threads=cpu_count,
stop=["<|im_end|>", "|<"], # TODO possible fix of stop
)
css = """
.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}
.disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
.xsmall {font-size: x-small;}
"""
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = [
["How to pick a lock? Provide detailed steps."],
["Explain the plot of Cinderella in a sentence."],
[
"How long does it take to become proficient in French, and what are the best methods for retaining information?"
],
["What are some common mistakes to avoid when writing code?"],
["Build a prompt to generate a beautiful portrait of a horse"],
["Suggest four metaphors to describe the benefits of AI"],
["Write a pop song about leaving home for the sandy beaches."],
["Write a summary demonstrating my ability to tame lions"],
["鲁迅和周树人什么关系 说中文"],
["鲁迅和周树人什么关系"],
["鲁迅和周树人什么关系 用英文回答"],
["从前有一头牛,这头牛后面有什么?"],
["正无穷大加一大于正无穷大吗?"],
["正无穷大加正无穷大大于正无穷大吗?"],
["-2的平方根等于什么"],
["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
[f"{etext} 翻成中文,列出3个版本"],
[f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"],
["假定 1 + 2 = 4, 试求 7 + 8"],
["判断一个数是不是质数的 javascript 码"],
["实现python 里 range(10)的 javascript 码"],
["实现python 里 [*(range(10)]的 javascript 码"],
["Erkläre die Handlung von Cinderella in einem Satz."],
["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"],
]
with gr.Blocks(
# title="mpt-30b-chat-ggml",
title=f"{MODEL_FILENAME}",
theme=gr.themes.Soft(text_size="sm", spacing_size="sm"),
css=css,
) as block:
with gr.Accordion("🎈 Info", open=False):
# gr.HTML(
# """<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>"""
# )
gr.Markdown(
f"""<h5><center><{REPO_ID}>{MODEL_FILENAME}</center></h4>
The bot only speaks English.
Most examples are meant for another model.
You probably should try to test
some related prompts.
""",
elem_classes="xsmall",
)
# chatbot = gr.Chatbot().style(height=700) # 500
chatbot = gr.Chatbot(height=500)
buff = gr.Textbox(show_label=False, visible=False)
with gr.Row():
with gr.Column(scale=5):
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Ask me anything (press Enter or click Submit to send)",
show_label=False,
).style(container=False)
with gr.Column(scale=1, min_width=50):
with gr.Row():
submit = gr.Button("Submit", elem_classes="xsmall")
stop = gr.Button("Stop", visible=False)
clear = gr.Button("Clear History", visible=True)
with gr.Row(visible=False):
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column(scale=2):
system = gr.Textbox(
label="System Prompt",
value=default_system_prompt,
show_label=False,
).style(container=False)
with gr.Column():
with gr.Row():
change = gr.Button("Change System Prompt")
reset = gr.Button("Reset System Prompt")
with gr.Accordion("Example Inputs", open=True):
examples = gr.Examples(
examples=examples,
inputs=[msg],
examples_per_page=40,
)
# with gr.Row():
with gr.Accordion("Disclaimer", open=False):
_ = "-".join(MODEL_FILENAME.split("-")[:2])
gr.Markdown(
f"Disclaimer: {_} can produce factually incorrect output, and should not be relied on to produce "
"factually accurate information. {_} was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
_ = """
msg.submit(
# fn=conversation.user_turn,
fn=predict,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
# queue=True,
show_progress="full",
api_name="predict",
)
submit.click(
fn=lambda x, y: ("",) + predict(x, y)[1:], # clear msg
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
)
# """
msg.submit(
# fn=conversation.user_turn,
fn=predict_str,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
api_name="predict",
).then(bot_str, chatbot, chatbot)
submit.click(
fn=lambda x, y: ("",) + predict_str(x, y)[1:], # clear msg
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
).then(bot_str, chatbot, chatbot)
clear.click(lambda: None, None, chatbot, queue=False)
# update buff Textbox, every: units in seconds)
# https://huggingface.co/spaces/julien-c/nvidia-smi/discussions
# does not work
# AttributeError: 'Blocks' object has no attribute 'run_forever'
# block.run_forever(lambda: ns.response, None, [buff], every=1)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
api_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
api_btn.click(
predict_api,
input_text,
out_text,
# show_progress="full",
api_name="api",
)
# concurrency_count=5, max_size=20
# max_size=36, concurrency_count=14
block.queue(concurrency_count=5, max_size=20).launch(debug=True)