Spaces:
Runtime error
Runtime error
improvements:
Browse files- added support for v2 whisper models
- language support
- support for transcription with timestamp
- .srt and .csv formats
app.py
CHANGED
@@ -2,29 +2,65 @@ import gradio as gr
|
|
2 |
import whisper
|
3 |
from pytube import YouTube
|
4 |
|
5 |
-
loaded_model = whisper.load_model("base")
|
6 |
-
current_size = 'base'
|
7 |
-
def inference(link):
|
8 |
-
yt = YouTube(link)
|
9 |
-
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
|
10 |
-
options = whisper.DecodingOptions(without_timestamps=True)
|
11 |
-
results = loaded_model.transcribe(path)
|
12 |
-
return results['text']
|
13 |
-
|
14 |
-
def change_model(size):
|
15 |
-
if size == current_size:
|
16 |
-
return
|
17 |
-
loaded_model = whisper.load_model(size)
|
18 |
-
current_size = size
|
19 |
-
|
20 |
-
def populate_metadata(link):
|
21 |
-
yt = YouTube(link)
|
22 |
-
return yt.thumbnail_url, yt.title
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
title="Youtube Whisperer"
|
25 |
description="Speech to text transcription of Youtube videos using OpenAI's Whisper"
|
26 |
-
block = gr.Blocks()
|
27 |
|
|
|
28 |
with block:
|
29 |
gr.HTML(
|
30 |
"""
|
@@ -40,23 +76,17 @@ with block:
|
|
40 |
)
|
41 |
with gr.Group():
|
42 |
with gr.Box():
|
43 |
-
sz = gr.Dropdown(label="Model Size", choices=
|
44 |
-
|
|
|
|
|
45 |
link = gr.Textbox(label="YouTube Link")
|
46 |
-
|
47 |
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
48 |
-
title = gr.Label(label="Video Title", placeholder="Title")
|
49 |
img = gr.Image(label="Thumbnail")
|
50 |
-
text = gr.Textbox(
|
51 |
-
label="Transcription",
|
52 |
-
placeholder="Transcription Output",
|
53 |
-
lines=5)
|
54 |
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
55 |
btn = gr.Button("Transcribe")
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
link.change(populate_metadata, inputs=[link], outputs=[img, title])
|
60 |
-
sz.change(change_model, inputs=[sz], outputs=[])
|
61 |
-
|
62 |
-
block.launch(debug=True)
|
|
|
2 |
import whisper
|
3 |
from pytube import YouTube
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
class GradioInference():
|
7 |
+
def __init__(self):
|
8 |
+
self.sizes = list(whisper._MODELS.keys())
|
9 |
+
self.langs = ["none"] + sorted(list(whisper.tokenizer.LANGUAGES.values()))
|
10 |
+
self.current_size = "base"
|
11 |
+
self.loaded_model = whisper.load_model(self.current_size)
|
12 |
+
self.yt = None
|
13 |
+
|
14 |
+
def __call__(self, link, lang, size, subs):
|
15 |
+
if self.yt is None:
|
16 |
+
self.yt = YouTube(link)
|
17 |
+
path = self.yt.streams.filter(only_audio=True)[0].download(filename="tmp.mp4")
|
18 |
+
|
19 |
+
if lang == "none":
|
20 |
+
lang = None
|
21 |
+
|
22 |
+
if size != self.current_size:
|
23 |
+
self.loaded_model = whisper.load_model(size)
|
24 |
+
self.current_size = size
|
25 |
+
results = self.loaded_model.transcribe(path, language=lang)
|
26 |
+
|
27 |
+
if subs == "None":
|
28 |
+
return results["text"]
|
29 |
+
elif subs == ".srt":
|
30 |
+
return self.srt(results["segments"])
|
31 |
+
elif ".csv" == ".csv":
|
32 |
+
return self.csv(results["segments"])
|
33 |
+
|
34 |
+
def srt(self, segments):
|
35 |
+
output = ""
|
36 |
+
for i, segment in enumerate(segments):
|
37 |
+
output += f"{i+1}\n"
|
38 |
+
output += f"{self.format_time(segment['start'])} --> {self.format_time(segment['end'])}\n"
|
39 |
+
output += f"{segment['text']}\n\n"
|
40 |
+
return output
|
41 |
+
|
42 |
+
def csv(self, segments):
|
43 |
+
output = ""
|
44 |
+
for segment in segments:
|
45 |
+
output += f"{segment['start']},{segment['end']},{segment['text']}\n"
|
46 |
+
return output
|
47 |
+
|
48 |
+
def format_time(self, time):
|
49 |
+
hours = time//3600
|
50 |
+
minutes = (time - hours*3600)//60
|
51 |
+
seconds = time - hours*3600 - minutes*60
|
52 |
+
milliseconds = (time - int(time))*1000
|
53 |
+
return f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d},{int(milliseconds):03d}"
|
54 |
+
|
55 |
+
def populate_metadata(self, link):
|
56 |
+
self.yt = YouTube(link)
|
57 |
+
return self.yt.thumbnail_url, self.yt.title
|
58 |
+
|
59 |
+
gio = GradioInference()
|
60 |
title="Youtube Whisperer"
|
61 |
description="Speech to text transcription of Youtube videos using OpenAI's Whisper"
|
|
|
62 |
|
63 |
+
block = gr.Blocks()
|
64 |
with block:
|
65 |
gr.HTML(
|
66 |
"""
|
|
|
76 |
)
|
77 |
with gr.Group():
|
78 |
with gr.Box():
|
79 |
+
sz = gr.Dropdown(label="Model Size", choices=gio.sizes, value='base')
|
80 |
+
lang = gr.Dropdown(label="Language", choices=gio.langs, value="none")
|
81 |
+
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
82 |
+
wt = gr.Radio(["None", ".srt", ".csv"], label="With Timestamps?")
|
83 |
link = gr.Textbox(label="YouTube Link")
|
84 |
+
title = gr.Label(label="Video Title")
|
85 |
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
|
|
86 |
img = gr.Image(label="Thumbnail")
|
87 |
+
text = gr.Textbox(label="Transcription", placeholder="Transcription Output", lines=5)
|
|
|
|
|
|
|
88 |
with gr.Row().style(mobile_collapse=False, equal_height=True):
|
89 |
btn = gr.Button("Transcribe")
|
90 |
+
btn.click(gio, inputs=[link, lang, sz, wt], outputs=[text])
|
91 |
+
link.change(gio.populate_metadata, inputs=[link], outputs=[img, title])
|
92 |
+
block.launch()
|
|
|
|
|
|
|
|