Spaces:
Runtime error
Runtime error
Migrate to HF Space
Browse files- .DS_Store +0 -0
- LICENSE +21 -0
- README.md +6 -11
- app.py +14 -0
- jieba/__init__.py +581 -0
- jieba/__main__.py +61 -0
- jieba/_compat.py +46 -0
- jieba/analyse/__init__.py +18 -0
- jieba/analyse/analyzer.py +37 -0
- jieba/analyse/idf.txt +0 -0
- jieba/analyse/textrank.py +110 -0
- jieba/analyse/tfidf.py +116 -0
- jieba/dict.txt +0 -0
- jieba/finalseg/__init__.py +92 -0
- jieba/finalseg/prob_emit.p +0 -0
- jieba/finalseg/prob_emit.py +0 -0
- jieba/finalseg/prob_start.p +14 -0
- jieba/finalseg/prob_start.py +4 -0
- jieba/finalseg/prob_trans.p +30 -0
- jieba/finalseg/prob_trans.py +4 -0
- jieba/posseg/__init__.py +294 -0
- jieba/posseg/char_state_tab.p +0 -0
- jieba/posseg/char_state_tab.py +0 -0
- jieba/posseg/prob_emit.p +0 -0
- jieba/posseg/prob_emit.py +0 -0
- jieba/posseg/prob_start.p +1094 -0
- jieba/posseg/prob_start.py +256 -0
- jieba/posseg/prob_trans.p +0 -0
- jieba/posseg/prob_trans.py +0 -0
- jieba/posseg/viterbi.py +53 -0
- models.json +5 -0
- pages/01_🍊Mandarin.py +209 -0
- pages/02_🍣Japanese.py +183 -0
- pages/03_🍔English.py +206 -0
- requirements.txt +27 -0
- tocfl_wordlist.csv +0 -0
- update_data.py +63 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2020 ExplosionAI GmbH
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,7 @@
|
|
1 |
-
|
2 |
-
title: Spacy Streamlit Haowenchiang
|
3 |
-
emoji: 🦀
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: yellow
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.10.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
---
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/howard-haowen/spacy-streamlit/HEAD)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
This repo hosts a [Streamlit Web APP](https://share.streamlit.io/howard-haowen/spacy-streamlit/app.py) that leverages the power of [spaCy](https://spacy.io/) to assist language learning. It currently suppports the following languages:
|
4 |
+
|
5 |
+
- Mandarin
|
6 |
+
- English
|
7 |
+
- Japanese
|
app.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.markdown("""
|
4 |
+
|
5 |
+
# AI模型輔助語言學習
|
6 |
+
|
7 |
+
## Language Learning Assisted by AI Models
|
8 |
+
|
9 |
+
- 開啟左側選單可選擇語言,目前支援華語、日語和英語。
|
10 |
+
- Select a language from the sidebar. Supported languages include Mandarin, Japanese, and English.
|
11 |
+
- 選單自動隱藏時,點選左上角 > 符號以開啟選單。
|
12 |
+
- If the sidebar is hidden, click on the > symbol in the upper left corner to open it.
|
13 |
+
|
14 |
+
""")
|
jieba/__init__.py
ADDED
@@ -0,0 +1,581 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import, unicode_literals
|
2 |
+
__version__ = '0.38'
|
3 |
+
__license__ = 'MIT'
|
4 |
+
|
5 |
+
import re
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import time
|
9 |
+
import logging
|
10 |
+
import marshal
|
11 |
+
import tempfile
|
12 |
+
import threading
|
13 |
+
from math import log
|
14 |
+
from hashlib import md5
|
15 |
+
from ._compat import *
|
16 |
+
from . import finalseg
|
17 |
+
|
18 |
+
if os.name == 'nt':
|
19 |
+
from shutil import move as _replace_file
|
20 |
+
else:
|
21 |
+
_replace_file = os.rename
|
22 |
+
|
23 |
+
_get_abs_path = lambda path: os.path.normpath(os.path.join(os.getcwd(), path))
|
24 |
+
|
25 |
+
DEFAULT_DICT = None
|
26 |
+
DEFAULT_DICT_NAME = "dict.txt"
|
27 |
+
|
28 |
+
log_console = logging.StreamHandler(sys.stderr)
|
29 |
+
default_logger = logging.getLogger(__name__)
|
30 |
+
default_logger.setLevel(logging.DEBUG)
|
31 |
+
default_logger.addHandler(log_console)
|
32 |
+
|
33 |
+
DICT_WRITING = {}
|
34 |
+
|
35 |
+
pool = None
|
36 |
+
|
37 |
+
re_userdict = re.compile('^(.+?)( [0-9]+)?( [a-z]+)?$', re.U)
|
38 |
+
|
39 |
+
re_eng = re.compile('[a-zA-Z0-9]', re.U)
|
40 |
+
|
41 |
+
# \u4E00-\u9FD5a-zA-Z0-9+#&\._ : All non-space characters. Will be handled with re_han
|
42 |
+
# \r\n|\s : whitespace characters. Will not be handled.
|
43 |
+
re_han_default = re.compile("([\u4E00-\u9FD5a-zA-Z0-9+#&\._]+)", re.U)
|
44 |
+
re_skip_default = re.compile("(\r\n|\s)", re.U)
|
45 |
+
re_han_cut_all = re.compile("([\u4E00-\u9FD5]+)", re.U)
|
46 |
+
re_skip_cut_all = re.compile("[^a-zA-Z0-9+#\n]", re.U)
|
47 |
+
|
48 |
+
def setLogLevel(log_level):
|
49 |
+
global logger
|
50 |
+
default_logger.setLevel(log_level)
|
51 |
+
|
52 |
+
class Tokenizer(object):
|
53 |
+
|
54 |
+
def __init__(self, dictionary=DEFAULT_DICT):
|
55 |
+
self.lock = threading.RLock()
|
56 |
+
if dictionary == DEFAULT_DICT:
|
57 |
+
self.dictionary = dictionary
|
58 |
+
else:
|
59 |
+
self.dictionary = _get_abs_path(dictionary)
|
60 |
+
self.FREQ = {}
|
61 |
+
self.total = 0
|
62 |
+
self.user_word_tag_tab = {}
|
63 |
+
self.initialized = False
|
64 |
+
self.tmp_dir = None
|
65 |
+
self.cache_file = None
|
66 |
+
|
67 |
+
def __repr__(self):
|
68 |
+
return '<Tokenizer dictionary=%r>' % self.dictionary
|
69 |
+
|
70 |
+
def gen_pfdict(self, f):
|
71 |
+
lfreq = {}
|
72 |
+
ltotal = 0
|
73 |
+
f_name = resolve_filename(f)
|
74 |
+
for lineno, line in enumerate(f, 1):
|
75 |
+
try:
|
76 |
+
line = line.strip().decode('utf-8')
|
77 |
+
word, freq = line.split(' ')[:2]
|
78 |
+
freq = int(freq)
|
79 |
+
lfreq[word] = freq
|
80 |
+
ltotal += freq
|
81 |
+
for ch in xrange(len(word)):
|
82 |
+
wfrag = word[:ch + 1]
|
83 |
+
if wfrag not in lfreq:
|
84 |
+
lfreq[wfrag] = 0
|
85 |
+
except ValueError:
|
86 |
+
raise ValueError(
|
87 |
+
'invalid dictionary entry in %s at Line %s: %s' % (f_name, lineno, line))
|
88 |
+
f.close()
|
89 |
+
return lfreq, ltotal
|
90 |
+
|
91 |
+
def initialize(self, dictionary=None):
|
92 |
+
if dictionary:
|
93 |
+
abs_path = _get_abs_path(dictionary)
|
94 |
+
if self.dictionary == abs_path and self.initialized:
|
95 |
+
return
|
96 |
+
else:
|
97 |
+
self.dictionary = abs_path
|
98 |
+
self.initialized = False
|
99 |
+
else:
|
100 |
+
abs_path = self.dictionary
|
101 |
+
|
102 |
+
with self.lock:
|
103 |
+
try:
|
104 |
+
with DICT_WRITING[abs_path]:
|
105 |
+
pass
|
106 |
+
except KeyError:
|
107 |
+
pass
|
108 |
+
if self.initialized:
|
109 |
+
return
|
110 |
+
|
111 |
+
default_logger.debug("Building prefix dict from %s ..." % (abs_path or 'the default dictionary'))
|
112 |
+
t1 = time.time()
|
113 |
+
if self.cache_file:
|
114 |
+
cache_file = self.cache_file
|
115 |
+
# default dictionary
|
116 |
+
elif abs_path == DEFAULT_DICT:
|
117 |
+
cache_file = "jieba.cache"
|
118 |
+
# custom dictionary
|
119 |
+
else:
|
120 |
+
cache_file = "jieba.u%s.cache" % md5(
|
121 |
+
abs_path.encode('utf-8', 'replace')).hexdigest()
|
122 |
+
cache_file = os.path.join(
|
123 |
+
self.tmp_dir or tempfile.gettempdir(), cache_file)
|
124 |
+
# prevent absolute path in self.cache_file
|
125 |
+
tmpdir = os.path.dirname(cache_file)
|
126 |
+
|
127 |
+
load_from_cache_fail = True
|
128 |
+
if os.path.isfile(cache_file) and (abs_path == DEFAULT_DICT or
|
129 |
+
os.path.getmtime(cache_file) > os.path.getmtime(abs_path)):
|
130 |
+
default_logger.debug(
|
131 |
+
"Loading model from cache %s" % cache_file)
|
132 |
+
try:
|
133 |
+
with open(cache_file, 'rb') as cf:
|
134 |
+
self.FREQ, self.total = marshal.load(cf)
|
135 |
+
load_from_cache_fail = False
|
136 |
+
except Exception:
|
137 |
+
load_from_cache_fail = True
|
138 |
+
|
139 |
+
if load_from_cache_fail:
|
140 |
+
wlock = DICT_WRITING.get(abs_path, threading.RLock())
|
141 |
+
DICT_WRITING[abs_path] = wlock
|
142 |
+
with wlock:
|
143 |
+
self.FREQ, self.total = self.gen_pfdict(self.get_dict_file())
|
144 |
+
default_logger.debug(
|
145 |
+
"Dumping model to file cache %s" % cache_file)
|
146 |
+
try:
|
147 |
+
# prevent moving across different filesystems
|
148 |
+
fd, fpath = tempfile.mkstemp(dir=tmpdir)
|
149 |
+
with os.fdopen(fd, 'wb') as temp_cache_file:
|
150 |
+
marshal.dump(
|
151 |
+
(self.FREQ, self.total), temp_cache_file)
|
152 |
+
_replace_file(fpath, cache_file)
|
153 |
+
except Exception:
|
154 |
+
default_logger.exception("Dump cache file failed.")
|
155 |
+
|
156 |
+
try:
|
157 |
+
del DICT_WRITING[abs_path]
|
158 |
+
except KeyError:
|
159 |
+
pass
|
160 |
+
|
161 |
+
self.initialized = True
|
162 |
+
default_logger.debug(
|
163 |
+
"Loading model cost %.3f seconds." % (time.time() - t1))
|
164 |
+
default_logger.debug("Prefix dict has been built succesfully.")
|
165 |
+
|
166 |
+
def check_initialized(self):
|
167 |
+
if not self.initialized:
|
168 |
+
self.initialize()
|
169 |
+
|
170 |
+
def calc(self, sentence, DAG, route):
|
171 |
+
N = len(sentence)
|
172 |
+
route[N] = (0, 0)
|
173 |
+
logtotal = log(self.total)
|
174 |
+
for idx in xrange(N - 1, -1, -1):
|
175 |
+
route[idx] = max((log(self.FREQ.get(sentence[idx:x + 1]) or 1) -
|
176 |
+
logtotal + route[x + 1][0], x) for x in DAG[idx])
|
177 |
+
|
178 |
+
def get_DAG(self, sentence):
|
179 |
+
self.check_initialized()
|
180 |
+
DAG = {}
|
181 |
+
N = len(sentence)
|
182 |
+
for k in xrange(N):
|
183 |
+
tmplist = []
|
184 |
+
i = k
|
185 |
+
frag = sentence[k]
|
186 |
+
while i < N and frag in self.FREQ:
|
187 |
+
if self.FREQ[frag]:
|
188 |
+
tmplist.append(i)
|
189 |
+
i += 1
|
190 |
+
frag = sentence[k:i + 1]
|
191 |
+
if not tmplist:
|
192 |
+
tmplist.append(k)
|
193 |
+
DAG[k] = tmplist
|
194 |
+
return DAG
|
195 |
+
|
196 |
+
def __cut_all(self, sentence):
|
197 |
+
dag = self.get_DAG(sentence)
|
198 |
+
old_j = -1
|
199 |
+
for k, L in iteritems(dag):
|
200 |
+
if len(L) == 1 and k > old_j:
|
201 |
+
yield sentence[k:L[0] + 1]
|
202 |
+
old_j = L[0]
|
203 |
+
else:
|
204 |
+
for j in L:
|
205 |
+
if j > k:
|
206 |
+
yield sentence[k:j + 1]
|
207 |
+
old_j = j
|
208 |
+
|
209 |
+
def __cut_DAG_NO_HMM(self, sentence):
|
210 |
+
DAG = self.get_DAG(sentence)
|
211 |
+
route = {}
|
212 |
+
self.calc(sentence, DAG, route)
|
213 |
+
x = 0
|
214 |
+
N = len(sentence)
|
215 |
+
buf = ''
|
216 |
+
while x < N:
|
217 |
+
y = route[x][1] + 1
|
218 |
+
l_word = sentence[x:y]
|
219 |
+
if re_eng.match(l_word) and len(l_word) == 1:
|
220 |
+
buf += l_word
|
221 |
+
x = y
|
222 |
+
else:
|
223 |
+
if buf:
|
224 |
+
yield buf
|
225 |
+
buf = ''
|
226 |
+
yield l_word
|
227 |
+
x = y
|
228 |
+
if buf:
|
229 |
+
yield buf
|
230 |
+
buf = ''
|
231 |
+
|
232 |
+
def __cut_DAG(self, sentence):
|
233 |
+
DAG = self.get_DAG(sentence)
|
234 |
+
route = {}
|
235 |
+
self.calc(sentence, DAG, route)
|
236 |
+
x = 0
|
237 |
+
buf = ''
|
238 |
+
N = len(sentence)
|
239 |
+
while x < N:
|
240 |
+
y = route[x][1] + 1
|
241 |
+
l_word = sentence[x:y]
|
242 |
+
if y - x == 1:
|
243 |
+
buf += l_word
|
244 |
+
else:
|
245 |
+
if buf:
|
246 |
+
if len(buf) == 1:
|
247 |
+
yield buf
|
248 |
+
buf = ''
|
249 |
+
else:
|
250 |
+
if not self.FREQ.get(buf):
|
251 |
+
recognized = finalseg.cut(buf)
|
252 |
+
for t in recognized:
|
253 |
+
yield t
|
254 |
+
else:
|
255 |
+
for elem in buf:
|
256 |
+
yield elem
|
257 |
+
buf = ''
|
258 |
+
yield l_word
|
259 |
+
x = y
|
260 |
+
|
261 |
+
if buf:
|
262 |
+
if len(buf) == 1:
|
263 |
+
yield buf
|
264 |
+
elif not self.FREQ.get(buf):
|
265 |
+
recognized = finalseg.cut(buf)
|
266 |
+
for t in recognized:
|
267 |
+
yield t
|
268 |
+
else:
|
269 |
+
for elem in buf:
|
270 |
+
yield elem
|
271 |
+
|
272 |
+
def cut(self, sentence, cut_all=False, HMM=True):
|
273 |
+
'''
|
274 |
+
The main function that segments an entire sentence that contains
|
275 |
+
Chinese characters into seperated words.
|
276 |
+
Parameter:
|
277 |
+
- sentence: The str(unicode) to be segmented.
|
278 |
+
- cut_all: Model type. True for full pattern, False for accurate pattern.
|
279 |
+
- HMM: Whether to use the Hidden Markov Model.
|
280 |
+
'''
|
281 |
+
sentence = strdecode(sentence)
|
282 |
+
|
283 |
+
if cut_all:
|
284 |
+
re_han = re_han_cut_all
|
285 |
+
re_skip = re_skip_cut_all
|
286 |
+
else:
|
287 |
+
re_han = re_han_default
|
288 |
+
re_skip = re_skip_default
|
289 |
+
if cut_all:
|
290 |
+
cut_block = self.__cut_all
|
291 |
+
elif HMM:
|
292 |
+
cut_block = self.__cut_DAG
|
293 |
+
else:
|
294 |
+
cut_block = self.__cut_DAG_NO_HMM
|
295 |
+
blocks = re_han.split(sentence)
|
296 |
+
for blk in blocks:
|
297 |
+
if not blk:
|
298 |
+
continue
|
299 |
+
if re_han.match(blk):
|
300 |
+
for word in cut_block(blk):
|
301 |
+
yield word
|
302 |
+
else:
|
303 |
+
tmp = re_skip.split(blk)
|
304 |
+
for x in tmp:
|
305 |
+
if re_skip.match(x):
|
306 |
+
yield x
|
307 |
+
elif not cut_all:
|
308 |
+
for xx in x:
|
309 |
+
yield xx
|
310 |
+
else:
|
311 |
+
yield x
|
312 |
+
|
313 |
+
def cut_for_search(self, sentence, HMM=True):
|
314 |
+
"""
|
315 |
+
Finer segmentation for search engines.
|
316 |
+
"""
|
317 |
+
words = self.cut(sentence, HMM=HMM)
|
318 |
+
for w in words:
|
319 |
+
if len(w) > 2:
|
320 |
+
for i in xrange(len(w) - 1):
|
321 |
+
gram2 = w[i:i + 2]
|
322 |
+
if self.FREQ.get(gram2):
|
323 |
+
yield gram2
|
324 |
+
if len(w) > 3:
|
325 |
+
for i in xrange(len(w) - 2):
|
326 |
+
gram3 = w[i:i + 3]
|
327 |
+
if self.FREQ.get(gram3):
|
328 |
+
yield gram3
|
329 |
+
yield w
|
330 |
+
|
331 |
+
def lcut(self, *args, **kwargs):
|
332 |
+
return list(self.cut(*args, **kwargs))
|
333 |
+
|
334 |
+
def lcut_for_search(self, *args, **kwargs):
|
335 |
+
return list(self.cut_for_search(*args, **kwargs))
|
336 |
+
|
337 |
+
_lcut = lcut
|
338 |
+
_lcut_for_search = lcut_for_search
|
339 |
+
|
340 |
+
def _lcut_no_hmm(self, sentence):
|
341 |
+
return self.lcut(sentence, False, False)
|
342 |
+
|
343 |
+
def _lcut_all(self, sentence):
|
344 |
+
return self.lcut(sentence, True)
|
345 |
+
|
346 |
+
def _lcut_for_search_no_hmm(self, sentence):
|
347 |
+
return self.lcut_for_search(sentence, False)
|
348 |
+
|
349 |
+
def get_dict_file(self):
|
350 |
+
if self.dictionary == DEFAULT_DICT:
|
351 |
+
return get_module_res(DEFAULT_DICT_NAME)
|
352 |
+
else:
|
353 |
+
return open(self.dictionary, 'rb')
|
354 |
+
|
355 |
+
def load_userdict(self, f):
|
356 |
+
'''
|
357 |
+
Load personalized dict to improve detect rate.
|
358 |
+
Parameter:
|
359 |
+
- f : A plain text file contains words and their ocurrences.
|
360 |
+
Can be a file-like object, or the path of the dictionary file,
|
361 |
+
whose encoding must be utf-8.
|
362 |
+
Structure of dict file:
|
363 |
+
word1 freq1 word_type1
|
364 |
+
word2 freq2 word_type2
|
365 |
+
...
|
366 |
+
Word type may be ignored
|
367 |
+
'''
|
368 |
+
self.check_initialized()
|
369 |
+
if isinstance(f, string_types):
|
370 |
+
f_name = f
|
371 |
+
f = open(f, 'rb')
|
372 |
+
else:
|
373 |
+
f_name = resolve_filename(f)
|
374 |
+
for lineno, ln in enumerate(f, 1):
|
375 |
+
line = ln.strip()
|
376 |
+
if not isinstance(line, text_type):
|
377 |
+
try:
|
378 |
+
line = line.decode('utf-8').lstrip('\ufeff')
|
379 |
+
except UnicodeDecodeError:
|
380 |
+
raise ValueError('dictionary file %s must be utf-8' % f_name)
|
381 |
+
if not line:
|
382 |
+
continue
|
383 |
+
# match won't be None because there's at least one character
|
384 |
+
word, freq, tag = re_userdict.match(line).groups()
|
385 |
+
if freq is not None:
|
386 |
+
freq = freq.strip()
|
387 |
+
if tag is not None:
|
388 |
+
tag = tag.strip()
|
389 |
+
self.add_word(word, freq, tag)
|
390 |
+
|
391 |
+
def add_word(self, word, freq=None, tag=None):
|
392 |
+
"""
|
393 |
+
Add a word to dictionary.
|
394 |
+
freq and tag can be omitted, freq defaults to be a calculated value
|
395 |
+
that ensures the word can be cut out.
|
396 |
+
"""
|
397 |
+
self.check_initialized()
|
398 |
+
word = strdecode(word)
|
399 |
+
freq = int(freq) if freq is not None else self.suggest_freq(word, False)
|
400 |
+
self.FREQ[word] = freq
|
401 |
+
self.total += freq
|
402 |
+
if tag:
|
403 |
+
self.user_word_tag_tab[word] = tag
|
404 |
+
for ch in xrange(len(word)):
|
405 |
+
wfrag = word[:ch + 1]
|
406 |
+
if wfrag not in self.FREQ:
|
407 |
+
self.FREQ[wfrag] = 0
|
408 |
+
|
409 |
+
def del_word(self, word):
|
410 |
+
"""
|
411 |
+
Convenient function for deleting a word.
|
412 |
+
"""
|
413 |
+
self.add_word(word, 0)
|
414 |
+
|
415 |
+
def suggest_freq(self, segment, tune=False):
|
416 |
+
"""
|
417 |
+
Suggest word frequency to force the characters in a word to be
|
418 |
+
joined or splitted.
|
419 |
+
Parameter:
|
420 |
+
- segment : The segments that the word is expected to be cut into,
|
421 |
+
If the word should be treated as a whole, use a str.
|
422 |
+
- tune : If True, tune the word frequency.
|
423 |
+
Note that HMM may affect the final result. If the result doesn't change,
|
424 |
+
set HMM=False.
|
425 |
+
"""
|
426 |
+
self.check_initialized()
|
427 |
+
ftotal = float(self.total)
|
428 |
+
freq = 1
|
429 |
+
if isinstance(segment, string_types):
|
430 |
+
word = segment
|
431 |
+
for seg in self.cut(word, HMM=False):
|
432 |
+
freq *= self.FREQ.get(seg, 1) / ftotal
|
433 |
+
freq = max(int(freq * self.total) + 1, self.FREQ.get(word, 1))
|
434 |
+
else:
|
435 |
+
segment = tuple(map(strdecode, segment))
|
436 |
+
word = ''.join(segment)
|
437 |
+
for seg in segment:
|
438 |
+
freq *= self.FREQ.get(seg, 1) / ftotal
|
439 |
+
freq = min(int(freq * self.total), self.FREQ.get(word, 0))
|
440 |
+
if tune:
|
441 |
+
add_word(word, freq)
|
442 |
+
return freq
|
443 |
+
|
444 |
+
def tokenize(self, unicode_sentence, mode="default", HMM=True):
|
445 |
+
"""
|
446 |
+
Tokenize a sentence and yields tuples of (word, start, end)
|
447 |
+
Parameter:
|
448 |
+
- sentence: the str(unicode) to be segmented.
|
449 |
+
- mode: "default" or "search", "search" is for finer segmentation.
|
450 |
+
- HMM: whether to use the Hidden Markov Model.
|
451 |
+
"""
|
452 |
+
if not isinstance(unicode_sentence, text_type):
|
453 |
+
raise ValueError("jieba: the input parameter should be unicode.")
|
454 |
+
start = 0
|
455 |
+
if mode == 'default':
|
456 |
+
for w in self.cut(unicode_sentence, HMM=HMM):
|
457 |
+
width = len(w)
|
458 |
+
yield (w, start, start + width)
|
459 |
+
start += width
|
460 |
+
else:
|
461 |
+
for w in self.cut(unicode_sentence, HMM=HMM):
|
462 |
+
width = len(w)
|
463 |
+
if len(w) > 2:
|
464 |
+
for i in xrange(len(w) - 1):
|
465 |
+
gram2 = w[i:i + 2]
|
466 |
+
if self.FREQ.get(gram2):
|
467 |
+
yield (gram2, start + i, start + i + 2)
|
468 |
+
if len(w) > 3:
|
469 |
+
for i in xrange(len(w) - 2):
|
470 |
+
gram3 = w[i:i + 3]
|
471 |
+
if self.FREQ.get(gram3):
|
472 |
+
yield (gram3, start + i, start + i + 3)
|
473 |
+
yield (w, start, start + width)
|
474 |
+
start += width
|
475 |
+
|
476 |
+
def set_dictionary(self, dictionary_path):
|
477 |
+
with self.lock:
|
478 |
+
abs_path = _get_abs_path(dictionary_path)
|
479 |
+
if not os.path.isfile(abs_path):
|
480 |
+
raise Exception("jieba: file does not exist: " + abs_path)
|
481 |
+
self.dictionary = abs_path
|
482 |
+
self.initialized = False
|
483 |
+
|
484 |
+
|
485 |
+
# default Tokenizer instance
|
486 |
+
|
487 |
+
dt = Tokenizer()
|
488 |
+
|
489 |
+
# global functions
|
490 |
+
|
491 |
+
get_FREQ = lambda k, d=None: dt.FREQ.get(k, d)
|
492 |
+
add_word = dt.add_word
|
493 |
+
calc = dt.calc
|
494 |
+
cut = dt.cut
|
495 |
+
lcut = dt.lcut
|
496 |
+
cut_for_search = dt.cut_for_search
|
497 |
+
lcut_for_search = dt.lcut_for_search
|
498 |
+
del_word = dt.del_word
|
499 |
+
get_DAG = dt.get_DAG
|
500 |
+
get_dict_file = dt.get_dict_file
|
501 |
+
initialize = dt.initialize
|
502 |
+
load_userdict = dt.load_userdict
|
503 |
+
set_dictionary = dt.set_dictionary
|
504 |
+
suggest_freq = dt.suggest_freq
|
505 |
+
tokenize = dt.tokenize
|
506 |
+
user_word_tag_tab = dt.user_word_tag_tab
|
507 |
+
|
508 |
+
|
509 |
+
def _lcut_all(s):
|
510 |
+
return dt._lcut_all(s)
|
511 |
+
|
512 |
+
|
513 |
+
def _lcut(s):
|
514 |
+
return dt._lcut(s)
|
515 |
+
|
516 |
+
|
517 |
+
def _lcut_all(s):
|
518 |
+
return dt._lcut_all(s)
|
519 |
+
|
520 |
+
|
521 |
+
def _lcut_for_search(s):
|
522 |
+
return dt._lcut_for_search(s)
|
523 |
+
|
524 |
+
|
525 |
+
def _lcut_for_search_no_hmm(s):
|
526 |
+
return dt._lcut_for_search_no_hmm(s)
|
527 |
+
|
528 |
+
|
529 |
+
def _pcut(sentence, cut_all=False, HMM=True):
|
530 |
+
parts = strdecode(sentence).splitlines(True)
|
531 |
+
if cut_all:
|
532 |
+
result = pool.map(_lcut_all, parts)
|
533 |
+
elif HMM:
|
534 |
+
result = pool.map(_lcut, parts)
|
535 |
+
else:
|
536 |
+
result = pool.map(_lcut_no_hmm, parts)
|
537 |
+
for r in result:
|
538 |
+
for w in r:
|
539 |
+
yield w
|
540 |
+
|
541 |
+
|
542 |
+
def _pcut_for_search(sentence, HMM=True):
|
543 |
+
parts = strdecode(sentence).splitlines(True)
|
544 |
+
if HMM:
|
545 |
+
result = pool.map(_lcut_for_search, parts)
|
546 |
+
else:
|
547 |
+
result = pool.map(_lcut_for_search_no_hmm, parts)
|
548 |
+
for r in result:
|
549 |
+
for w in r:
|
550 |
+
yield w
|
551 |
+
|
552 |
+
|
553 |
+
def enable_parallel(processnum=None):
|
554 |
+
"""
|
555 |
+
Change the module's `cut` and `cut_for_search` functions to the
|
556 |
+
parallel version.
|
557 |
+
Note that this only works using dt, custom Tokenizer
|
558 |
+
instances are not supported.
|
559 |
+
"""
|
560 |
+
global pool, dt, cut, cut_for_search
|
561 |
+
from multiprocessing import cpu_count
|
562 |
+
if os.name == 'nt':
|
563 |
+
raise NotImplementedError(
|
564 |
+
"jieba: parallel mode only supports posix system")
|
565 |
+
else:
|
566 |
+
from multiprocessing import Pool
|
567 |
+
dt.check_initialized()
|
568 |
+
if processnum is None:
|
569 |
+
processnum = cpu_count()
|
570 |
+
pool = Pool(processnum)
|
571 |
+
cut = _pcut
|
572 |
+
cut_for_search = _pcut_for_search
|
573 |
+
|
574 |
+
|
575 |
+
def disable_parallel():
|
576 |
+
global pool, dt, cut, cut_for_search
|
577 |
+
if pool:
|
578 |
+
pool.close()
|
579 |
+
pool = None
|
580 |
+
cut = dt.cut
|
581 |
+
cut_for_search = dt.cut_for_search
|
jieba/__main__.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Jieba command line interface."""
|
2 |
+
import sys
|
3 |
+
import jieba
|
4 |
+
from argparse import ArgumentParser
|
5 |
+
from ._compat import *
|
6 |
+
|
7 |
+
parser = ArgumentParser(usage="%s -m jieba [options] filename" % sys.executable, description="Jieba command line interface.", epilog="If no filename specified, use STDIN instead.")
|
8 |
+
parser.add_argument("-d", "--delimiter", metavar="DELIM", default=' / ',
|
9 |
+
nargs='?', const=' ',
|
10 |
+
help="use DELIM instead of ' / ' for word delimiter; or a space if it is used without DELIM")
|
11 |
+
parser.add_argument("-p", "--pos", metavar="DELIM", nargs='?', const='_',
|
12 |
+
help="enable POS tagging; if DELIM is specified, use DELIM instead of '_' for POS delimiter")
|
13 |
+
parser.add_argument("-D", "--dict", help="use DICT as dictionary")
|
14 |
+
parser.add_argument("-u", "--user-dict",
|
15 |
+
help="use USER_DICT together with the default dictionary or DICT (if specified)")
|
16 |
+
parser.add_argument("-a", "--cut-all",
|
17 |
+
action="store_true", dest="cutall", default=False,
|
18 |
+
help="full pattern cutting (ignored with POS tagging)")
|
19 |
+
parser.add_argument("-n", "--no-hmm", dest="hmm", action="store_false",
|
20 |
+
default=True, help="don't use the Hidden Markov Model")
|
21 |
+
parser.add_argument("-q", "--quiet", action="store_true", default=False,
|
22 |
+
help="don't print loading messages to stderr")
|
23 |
+
parser.add_argument("-V", '--version', action='version',
|
24 |
+
version="Jieba " + jieba.__version__)
|
25 |
+
parser.add_argument("filename", nargs='?', help="input file")
|
26 |
+
|
27 |
+
args = parser.parse_args()
|
28 |
+
|
29 |
+
if args.quiet:
|
30 |
+
jieba.setLogLevel(60)
|
31 |
+
if args.pos:
|
32 |
+
import jieba.posseg
|
33 |
+
posdelim = args.pos
|
34 |
+
def cutfunc(sentence, _, HMM=True):
|
35 |
+
for w, f in jieba.posseg.cut(sentence, HMM):
|
36 |
+
yield w + posdelim + f
|
37 |
+
else:
|
38 |
+
cutfunc = jieba.cut
|
39 |
+
|
40 |
+
delim = text_type(args.delimiter)
|
41 |
+
cutall = args.cutall
|
42 |
+
hmm = args.hmm
|
43 |
+
fp = open(args.filename, 'r') if args.filename else sys.stdin
|
44 |
+
|
45 |
+
if args.dict:
|
46 |
+
jieba.initialize(args.dict)
|
47 |
+
else:
|
48 |
+
jieba.initialize()
|
49 |
+
if args.user_dict:
|
50 |
+
jieba.load_userdict(args.user_dict)
|
51 |
+
|
52 |
+
ln = fp.readline()
|
53 |
+
while ln:
|
54 |
+
l = ln.rstrip('\r\n')
|
55 |
+
result = delim.join(cutfunc(ln.rstrip('\r\n'), cutall, hmm))
|
56 |
+
if PY2:
|
57 |
+
result = result.encode(default_encoding)
|
58 |
+
print(result)
|
59 |
+
ln = fp.readline()
|
60 |
+
|
61 |
+
fp.close()
|
jieba/_compat.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
|
5 |
+
try:
|
6 |
+
import pkg_resources
|
7 |
+
get_module_res = lambda *res: pkg_resources.resource_stream(__name__,
|
8 |
+
os.path.join(*res))
|
9 |
+
except ImportError:
|
10 |
+
get_module_res = lambda *res: open(os.path.normpath(os.path.join(
|
11 |
+
os.getcwd(), os.path.dirname(__file__), *res)), 'rb')
|
12 |
+
|
13 |
+
PY2 = sys.version_info[0] == 2
|
14 |
+
|
15 |
+
default_encoding = sys.getfilesystemencoding()
|
16 |
+
|
17 |
+
if PY2:
|
18 |
+
text_type = unicode
|
19 |
+
string_types = (str, unicode)
|
20 |
+
|
21 |
+
iterkeys = lambda d: d.iterkeys()
|
22 |
+
itervalues = lambda d: d.itervalues()
|
23 |
+
iteritems = lambda d: d.iteritems()
|
24 |
+
|
25 |
+
else:
|
26 |
+
text_type = str
|
27 |
+
string_types = (str,)
|
28 |
+
xrange = range
|
29 |
+
|
30 |
+
iterkeys = lambda d: iter(d.keys())
|
31 |
+
itervalues = lambda d: iter(d.values())
|
32 |
+
iteritems = lambda d: iter(d.items())
|
33 |
+
|
34 |
+
def strdecode(sentence):
|
35 |
+
if not isinstance(sentence, text_type):
|
36 |
+
try:
|
37 |
+
sentence = sentence.decode('utf-8')
|
38 |
+
except UnicodeDecodeError:
|
39 |
+
sentence = sentence.decode('gbk', 'ignore')
|
40 |
+
return sentence
|
41 |
+
|
42 |
+
def resolve_filename(f):
|
43 |
+
try:
|
44 |
+
return f.name
|
45 |
+
except AttributeError:
|
46 |
+
return repr(f)
|
jieba/analyse/__init__.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import
|
2 |
+
from .tfidf import TFIDF
|
3 |
+
from .textrank import TextRank
|
4 |
+
try:
|
5 |
+
from .analyzer import ChineseAnalyzer
|
6 |
+
except ImportError:
|
7 |
+
pass
|
8 |
+
|
9 |
+
default_tfidf = TFIDF()
|
10 |
+
default_textrank = TextRank()
|
11 |
+
|
12 |
+
extract_tags = tfidf = default_tfidf.extract_tags
|
13 |
+
set_idf_path = default_tfidf.set_idf_path
|
14 |
+
textrank = default_textrank.extract_tags
|
15 |
+
|
16 |
+
def set_stop_words(stop_words_path):
|
17 |
+
default_tfidf.set_stop_words(stop_words_path)
|
18 |
+
default_textrank.set_stop_words(stop_words_path)
|
jieba/analyse/analyzer.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# encoding=utf-8
|
2 |
+
from __future__ import unicode_literals
|
3 |
+
from whoosh.analysis import RegexAnalyzer, LowercaseFilter, StopFilter, StemFilter
|
4 |
+
from whoosh.analysis import Tokenizer, Token
|
5 |
+
from whoosh.lang.porter import stem
|
6 |
+
|
7 |
+
import jieba
|
8 |
+
import re
|
9 |
+
|
10 |
+
STOP_WORDS = frozenset(('a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'can',
|
11 |
+
'for', 'from', 'have', 'if', 'in', 'is', 'it', 'may',
|
12 |
+
'not', 'of', 'on', 'or', 'tbd', 'that', 'the', 'this',
|
13 |
+
'to', 'us', 'we', 'when', 'will', 'with', 'yet',
|
14 |
+
'you', 'your', '的', '了', '和'))
|
15 |
+
|
16 |
+
accepted_chars = re.compile(r"[\u4E00-\u9FD5]+")
|
17 |
+
|
18 |
+
|
19 |
+
class ChineseTokenizer(Tokenizer):
|
20 |
+
|
21 |
+
def __call__(self, text, **kargs):
|
22 |
+
words = jieba.tokenize(text, mode="search")
|
23 |
+
token = Token()
|
24 |
+
for (w, start_pos, stop_pos) in words:
|
25 |
+
if not accepted_chars.match(w) and len(w) <= 1:
|
26 |
+
continue
|
27 |
+
token.original = token.text = w
|
28 |
+
token.pos = start_pos
|
29 |
+
token.startchar = start_pos
|
30 |
+
token.endchar = stop_pos
|
31 |
+
yield token
|
32 |
+
|
33 |
+
|
34 |
+
def ChineseAnalyzer(stoplist=STOP_WORDS, minsize=1, stemfn=stem, cachesize=50000):
|
35 |
+
return (ChineseTokenizer() | LowercaseFilter() |
|
36 |
+
StopFilter(stoplist=stoplist, minsize=minsize) |
|
37 |
+
StemFilter(stemfn=stemfn, ignore=None, cachesize=cachesize))
|
jieba/analyse/idf.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/analyse/textrank.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
|
4 |
+
from __future__ import absolute_import, unicode_literals
|
5 |
+
import sys
|
6 |
+
from operator import itemgetter
|
7 |
+
from collections import defaultdict
|
8 |
+
import jieba.posseg
|
9 |
+
from .tfidf import KeywordExtractor
|
10 |
+
from .._compat import *
|
11 |
+
|
12 |
+
|
13 |
+
class UndirectWeightedGraph:
|
14 |
+
d = 0.85
|
15 |
+
|
16 |
+
def __init__(self):
|
17 |
+
self.graph = defaultdict(list)
|
18 |
+
|
19 |
+
def addEdge(self, start, end, weight):
|
20 |
+
# use a tuple (start, end, weight) instead of a Edge object
|
21 |
+
self.graph[start].append((start, end, weight))
|
22 |
+
self.graph[end].append((end, start, weight))
|
23 |
+
|
24 |
+
def rank(self):
|
25 |
+
ws = defaultdict(float)
|
26 |
+
outSum = defaultdict(float)
|
27 |
+
|
28 |
+
wsdef = 1.0 / (len(self.graph) or 1.0)
|
29 |
+
for n, out in self.graph.items():
|
30 |
+
ws[n] = wsdef
|
31 |
+
outSum[n] = sum((e[2] for e in out), 0.0)
|
32 |
+
|
33 |
+
# this line for build stable iteration
|
34 |
+
sorted_keys = sorted(self.graph.keys())
|
35 |
+
for x in xrange(10): # 10 iters
|
36 |
+
for n in sorted_keys:
|
37 |
+
s = 0
|
38 |
+
for e in self.graph[n]:
|
39 |
+
s += e[2] / outSum[e[1]] * ws[e[1]]
|
40 |
+
ws[n] = (1 - self.d) + self.d * s
|
41 |
+
|
42 |
+
(min_rank, max_rank) = (sys.float_info[0], sys.float_info[3])
|
43 |
+
|
44 |
+
for w in itervalues(ws):
|
45 |
+
if w < min_rank:
|
46 |
+
min_rank = w
|
47 |
+
if w > max_rank:
|
48 |
+
max_rank = w
|
49 |
+
|
50 |
+
for n, w in ws.items():
|
51 |
+
# to unify the weights, don't *100.
|
52 |
+
ws[n] = (w - min_rank / 10.0) / (max_rank - min_rank / 10.0)
|
53 |
+
|
54 |
+
return ws
|
55 |
+
|
56 |
+
|
57 |
+
class TextRank(KeywordExtractor):
|
58 |
+
|
59 |
+
def __init__(self):
|
60 |
+
self.tokenizer = self.postokenizer = jieba.posseg.dt
|
61 |
+
self.stop_words = self.STOP_WORDS.copy()
|
62 |
+
self.pos_filt = frozenset(('ns', 'n', 'vn', 'v'))
|
63 |
+
self.span = 5
|
64 |
+
|
65 |
+
def pairfilter(self, wp):
|
66 |
+
return (wp.flag in self.pos_filt and len(wp.word.strip()) >= 2
|
67 |
+
and wp.word.lower() not in self.stop_words)
|
68 |
+
|
69 |
+
def textrank(self, sentence, topK=20, withWeight=False, allowPOS=('ns', 'n', 'vn', 'v'), withFlag=False):
|
70 |
+
"""
|
71 |
+
Extract keywords from sentence using TextRank algorithm.
|
72 |
+
Parameter:
|
73 |
+
- topK: return how many top keywords. `None` for all possible words.
|
74 |
+
- withWeight: if True, return a list of (word, weight);
|
75 |
+
if False, return a list of words.
|
76 |
+
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v'].
|
77 |
+
if the POS of w is not in this list, it will be filtered.
|
78 |
+
- withFlag: if True, return a list of pair(word, weight) like posseg.cut
|
79 |
+
if False, return a list of words
|
80 |
+
"""
|
81 |
+
self.pos_filt = frozenset(allowPOS)
|
82 |
+
g = UndirectWeightedGraph()
|
83 |
+
cm = defaultdict(int)
|
84 |
+
words = tuple(self.tokenizer.cut(sentence))
|
85 |
+
for i, wp in enumerate(words):
|
86 |
+
if self.pairfilter(wp):
|
87 |
+
for j in xrange(i + 1, i + self.span):
|
88 |
+
if j >= len(words):
|
89 |
+
break
|
90 |
+
if not self.pairfilter(words[j]):
|
91 |
+
continue
|
92 |
+
if allowPOS and withFlag:
|
93 |
+
cm[(wp, words[j])] += 1
|
94 |
+
else:
|
95 |
+
cm[(wp.word, words[j].word)] += 1
|
96 |
+
|
97 |
+
for terms, w in cm.items():
|
98 |
+
g.addEdge(terms[0], terms[1], w)
|
99 |
+
nodes_rank = g.rank()
|
100 |
+
if withWeight:
|
101 |
+
tags = sorted(nodes_rank.items(), key=itemgetter(1), reverse=True)
|
102 |
+
else:
|
103 |
+
tags = sorted(nodes_rank, key=nodes_rank.__getitem__, reverse=True)
|
104 |
+
|
105 |
+
if topK:
|
106 |
+
return tags[:topK]
|
107 |
+
else:
|
108 |
+
return tags
|
109 |
+
|
110 |
+
extract_tags = textrank
|
jieba/analyse/tfidf.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# encoding=utf-8
|
2 |
+
from __future__ import absolute_import
|
3 |
+
import os
|
4 |
+
import jieba
|
5 |
+
import jieba.posseg
|
6 |
+
from operator import itemgetter
|
7 |
+
|
8 |
+
_get_module_path = lambda path: os.path.normpath(os.path.join(os.getcwd(),
|
9 |
+
os.path.dirname(__file__), path))
|
10 |
+
_get_abs_path = jieba._get_abs_path
|
11 |
+
|
12 |
+
DEFAULT_IDF = _get_module_path("idf.txt")
|
13 |
+
|
14 |
+
|
15 |
+
class KeywordExtractor(object):
|
16 |
+
|
17 |
+
STOP_WORDS = set((
|
18 |
+
"the", "of", "is", "and", "to", "in", "that", "we", "for", "an", "are",
|
19 |
+
"by", "be", "as", "on", "with", "can", "if", "from", "which", "you", "it",
|
20 |
+
"this", "then", "at", "have", "all", "not", "one", "has", "or", "that"
|
21 |
+
))
|
22 |
+
|
23 |
+
def set_stop_words(self, stop_words_path):
|
24 |
+
abs_path = _get_abs_path(stop_words_path)
|
25 |
+
if not os.path.isfile(abs_path):
|
26 |
+
raise Exception("jieba: file does not exist: " + abs_path)
|
27 |
+
content = open(abs_path, 'rb').read().decode('utf-8')
|
28 |
+
for line in content.splitlines():
|
29 |
+
self.stop_words.add(line)
|
30 |
+
|
31 |
+
def extract_tags(self, *args, **kwargs):
|
32 |
+
raise NotImplementedError
|
33 |
+
|
34 |
+
|
35 |
+
class IDFLoader(object):
|
36 |
+
|
37 |
+
def __init__(self, idf_path=None):
|
38 |
+
self.path = ""
|
39 |
+
self.idf_freq = {}
|
40 |
+
self.median_idf = 0.0
|
41 |
+
if idf_path:
|
42 |
+
self.set_new_path(idf_path)
|
43 |
+
|
44 |
+
def set_new_path(self, new_idf_path):
|
45 |
+
if self.path != new_idf_path:
|
46 |
+
self.path = new_idf_path
|
47 |
+
content = open(new_idf_path, 'rb').read().decode('utf-8')
|
48 |
+
self.idf_freq = {}
|
49 |
+
for line in content.splitlines():
|
50 |
+
word, freq = line.strip().split(' ')
|
51 |
+
self.idf_freq[word] = float(freq)
|
52 |
+
self.median_idf = sorted(
|
53 |
+
self.idf_freq.values())[len(self.idf_freq) // 2]
|
54 |
+
|
55 |
+
def get_idf(self):
|
56 |
+
return self.idf_freq, self.median_idf
|
57 |
+
|
58 |
+
|
59 |
+
class TFIDF(KeywordExtractor):
|
60 |
+
|
61 |
+
def __init__(self, idf_path=None):
|
62 |
+
self.tokenizer = jieba.dt
|
63 |
+
self.postokenizer = jieba.posseg.dt
|
64 |
+
self.stop_words = self.STOP_WORDS.copy()
|
65 |
+
self.idf_loader = IDFLoader(idf_path or DEFAULT_IDF)
|
66 |
+
self.idf_freq, self.median_idf = self.idf_loader.get_idf()
|
67 |
+
|
68 |
+
def set_idf_path(self, idf_path):
|
69 |
+
new_abs_path = _get_abs_path(idf_path)
|
70 |
+
if not os.path.isfile(new_abs_path):
|
71 |
+
raise Exception("jieba: file does not exist: " + new_abs_path)
|
72 |
+
self.idf_loader.set_new_path(new_abs_path)
|
73 |
+
self.idf_freq, self.median_idf = self.idf_loader.get_idf()
|
74 |
+
|
75 |
+
def extract_tags(self, sentence, topK=20, withWeight=False, allowPOS=(), withFlag=False):
|
76 |
+
"""
|
77 |
+
Extract keywords from sentence using TF-IDF algorithm.
|
78 |
+
Parameter:
|
79 |
+
- topK: return how many top keywords. `None` for all possible words.
|
80 |
+
- withWeight: if True, return a list of (word, weight);
|
81 |
+
if False, return a list of words.
|
82 |
+
- allowPOS: the allowed POS list eg. ['ns', 'n', 'vn', 'v','nr'].
|
83 |
+
if the POS of w is not in this list,it will be filtered.
|
84 |
+
- withFlag: only work with allowPOS is not empty.
|
85 |
+
if True, return a list of pair(word, weight) like posseg.cut
|
86 |
+
if False, return a list of words
|
87 |
+
"""
|
88 |
+
if allowPOS:
|
89 |
+
allowPOS = frozenset(allowPOS)
|
90 |
+
words = self.postokenizer.cut(sentence)
|
91 |
+
else:
|
92 |
+
words = self.tokenizer.cut(sentence)
|
93 |
+
freq = {}
|
94 |
+
for w in words:
|
95 |
+
if allowPOS:
|
96 |
+
if w.flag not in allowPOS:
|
97 |
+
continue
|
98 |
+
elif not withFlag:
|
99 |
+
w = w.word
|
100 |
+
wc = w.word if allowPOS and withFlag else w
|
101 |
+
if len(wc.strip()) < 2 or wc.lower() in self.stop_words:
|
102 |
+
continue
|
103 |
+
freq[w] = freq.get(w, 0.0) + 1.0
|
104 |
+
total = sum(freq.values())
|
105 |
+
for k in freq:
|
106 |
+
kw = k.word if allowPOS and withFlag else k
|
107 |
+
freq[k] *= self.idf_freq.get(kw, self.median_idf) / total
|
108 |
+
|
109 |
+
if withWeight:
|
110 |
+
tags = sorted(freq.items(), key=itemgetter(1), reverse=True)
|
111 |
+
else:
|
112 |
+
tags = sorted(freq, key=freq.__getitem__, reverse=True)
|
113 |
+
if topK:
|
114 |
+
return tags[:topK]
|
115 |
+
else:
|
116 |
+
return tags
|
jieba/dict.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/finalseg/__init__.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import, unicode_literals
|
2 |
+
import re
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import pickle
|
6 |
+
from .._compat import *
|
7 |
+
|
8 |
+
MIN_FLOAT = -3.14e100
|
9 |
+
|
10 |
+
PROB_START_P = "prob_start.p"
|
11 |
+
PROB_TRANS_P = "prob_trans.p"
|
12 |
+
PROB_EMIT_P = "prob_emit.p"
|
13 |
+
|
14 |
+
|
15 |
+
PrevStatus = {
|
16 |
+
'B': 'ES',
|
17 |
+
'M': 'MB',
|
18 |
+
'S': 'SE',
|
19 |
+
'E': 'BM'
|
20 |
+
}
|
21 |
+
|
22 |
+
|
23 |
+
def load_model():
|
24 |
+
start_p = pickle.load(get_module_res("finalseg", PROB_START_P))
|
25 |
+
trans_p = pickle.load(get_module_res("finalseg", PROB_TRANS_P))
|
26 |
+
emit_p = pickle.load(get_module_res("finalseg", PROB_EMIT_P))
|
27 |
+
return start_p, trans_p, emit_p
|
28 |
+
|
29 |
+
if sys.platform.startswith("java"):
|
30 |
+
start_P, trans_P, emit_P = load_model()
|
31 |
+
else:
|
32 |
+
from .prob_start import P as start_P
|
33 |
+
from .prob_trans import P as trans_P
|
34 |
+
from .prob_emit import P as emit_P
|
35 |
+
|
36 |
+
|
37 |
+
def viterbi(obs, states, start_p, trans_p, emit_p):
|
38 |
+
V = [{}] # tabular
|
39 |
+
path = {}
|
40 |
+
for y in states: # init
|
41 |
+
V[0][y] = start_p[y] + emit_p[y].get(obs[0], MIN_FLOAT)
|
42 |
+
path[y] = [y]
|
43 |
+
for t in xrange(1, len(obs)):
|
44 |
+
V.append({})
|
45 |
+
newpath = {}
|
46 |
+
for y in states:
|
47 |
+
em_p = emit_p[y].get(obs[t], MIN_FLOAT)
|
48 |
+
(prob, state) = max(
|
49 |
+
[(V[t - 1][y0] + trans_p[y0].get(y, MIN_FLOAT) + em_p, y0) for y0 in PrevStatus[y]])
|
50 |
+
V[t][y] = prob
|
51 |
+
newpath[y] = path[state] + [y]
|
52 |
+
path = newpath
|
53 |
+
|
54 |
+
(prob, state) = max((V[len(obs) - 1][y], y) for y in 'ES')
|
55 |
+
|
56 |
+
return (prob, path[state])
|
57 |
+
|
58 |
+
|
59 |
+
def __cut(sentence):
|
60 |
+
global emit_P
|
61 |
+
prob, pos_list = viterbi(sentence, 'BMES', start_P, trans_P, emit_P)
|
62 |
+
begin, nexti = 0, 0
|
63 |
+
# print pos_list, sentence
|
64 |
+
for i, char in enumerate(sentence):
|
65 |
+
pos = pos_list[i]
|
66 |
+
if pos == 'B':
|
67 |
+
begin = i
|
68 |
+
elif pos == 'E':
|
69 |
+
yield sentence[begin:i + 1]
|
70 |
+
nexti = i + 1
|
71 |
+
elif pos == 'S':
|
72 |
+
yield char
|
73 |
+
nexti = i + 1
|
74 |
+
if nexti < len(sentence):
|
75 |
+
yield sentence[nexti:]
|
76 |
+
|
77 |
+
re_han = re.compile("([\u4E00-\u9FD5]+)")
|
78 |
+
re_skip = re.compile("(\d+\.\d+|[a-zA-Z0-9]+)")
|
79 |
+
|
80 |
+
|
81 |
+
def cut(sentence):
|
82 |
+
sentence = strdecode(sentence)
|
83 |
+
blocks = re_han.split(sentence)
|
84 |
+
for blk in blocks:
|
85 |
+
if re_han.match(blk):
|
86 |
+
for word in __cut(blk):
|
87 |
+
yield word
|
88 |
+
else:
|
89 |
+
tmp = re_skip.split(blk)
|
90 |
+
for x in tmp:
|
91 |
+
if x:
|
92 |
+
yield x
|
jieba/finalseg/prob_emit.p
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/finalseg/prob_emit.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/finalseg/prob_start.p
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(dp0
|
2 |
+
S'E'
|
3 |
+
p1
|
4 |
+
F-3.14e+100
|
5 |
+
sS'S'
|
6 |
+
p2
|
7 |
+
F-1.0490863400100874
|
8 |
+
sS'B'
|
9 |
+
p3
|
10 |
+
F-0.4311793320941878
|
11 |
+
sS'M'
|
12 |
+
p4
|
13 |
+
F-3.14e+100
|
14 |
+
s.
|
jieba/finalseg/prob_start.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
P={'B': -0.4311793320941878,
|
2 |
+
'E': -3.14e+100,
|
3 |
+
'M': -3.14e+100,
|
4 |
+
'S': -1.0490863400100874}
|
jieba/finalseg/prob_trans.p
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(dp0
|
2 |
+
S'M'
|
3 |
+
p1
|
4 |
+
(dp2
|
5 |
+
g1
|
6 |
+
F-1.776721924369053
|
7 |
+
sS'E'
|
8 |
+
p3
|
9 |
+
F-0.18535639277522836
|
10 |
+
ssS'S'
|
11 |
+
p4
|
12 |
+
(dp5
|
13 |
+
g4
|
14 |
+
F-0.8149794471455989
|
15 |
+
sS'B'
|
16 |
+
p6
|
17 |
+
F-0.5845590441999979
|
18 |
+
ssg6
|
19 |
+
(dp7
|
20 |
+
g1
|
21 |
+
F-1.9405006828418647
|
22 |
+
sg3
|
23 |
+
F-0.15505510933264552
|
24 |
+
ssg3
|
25 |
+
(dp8
|
26 |
+
g4
|
27 |
+
F-1.0069624262712982
|
28 |
+
sg6
|
29 |
+
F-0.4546453789910586
|
30 |
+
ss.
|
jieba/finalseg/prob_trans.py
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
P={'B': {'E': -0.15505510933264552, 'M': -1.9405006828418647},
|
2 |
+
'E': {'B': -0.4546453789910586, 'S': -1.0069624262712982},
|
3 |
+
'M': {'E': -0.18535639277522836, 'M': -1.776721924369053},
|
4 |
+
'S': {'B': -0.5845590441999979, 'S': -0.8149794471455989}}
|
jieba/posseg/__init__.py
ADDED
@@ -0,0 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import absolute_import, unicode_literals
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import sys
|
5 |
+
import jieba
|
6 |
+
import pickle
|
7 |
+
from .._compat import *
|
8 |
+
from .viterbi import viterbi
|
9 |
+
|
10 |
+
PROB_START_P = "prob_start.p"
|
11 |
+
PROB_TRANS_P = "prob_trans.p"
|
12 |
+
PROB_EMIT_P = "prob_emit.p"
|
13 |
+
CHAR_STATE_TAB_P = "char_state_tab.p"
|
14 |
+
|
15 |
+
re_han_detail = re.compile("([\u4E00-\u9FD5]+)")
|
16 |
+
re_skip_detail = re.compile("([\.0-9]+|[a-zA-Z0-9]+)")
|
17 |
+
re_han_internal = re.compile("([\u4E00-\u9FD5a-zA-Z0-9+#&\._]+)")
|
18 |
+
re_skip_internal = re.compile("(\r\n|\s)")
|
19 |
+
|
20 |
+
re_eng = re.compile("[a-zA-Z0-9]+")
|
21 |
+
re_num = re.compile("[\.0-9]+")
|
22 |
+
|
23 |
+
re_eng1 = re.compile('^[a-zA-Z0-9]$', re.U)
|
24 |
+
|
25 |
+
|
26 |
+
def load_model():
|
27 |
+
# For Jython
|
28 |
+
start_p = pickle.load(get_module_res("posseg", PROB_START_P))
|
29 |
+
trans_p = pickle.load(get_module_res("posseg", PROB_TRANS_P))
|
30 |
+
emit_p = pickle.load(get_module_res("posseg", PROB_EMIT_P))
|
31 |
+
state = pickle.load(get_module_res("posseg", CHAR_STATE_TAB_P))
|
32 |
+
return state, start_p, trans_p, emit_p
|
33 |
+
|
34 |
+
|
35 |
+
if sys.platform.startswith("java"):
|
36 |
+
char_state_tab_P, start_P, trans_P, emit_P = load_model()
|
37 |
+
else:
|
38 |
+
from .char_state_tab import P as char_state_tab_P
|
39 |
+
from .prob_start import P as start_P
|
40 |
+
from .prob_trans import P as trans_P
|
41 |
+
from .prob_emit import P as emit_P
|
42 |
+
|
43 |
+
|
44 |
+
class pair(object):
|
45 |
+
|
46 |
+
def __init__(self, word, flag):
|
47 |
+
self.word = word
|
48 |
+
self.flag = flag
|
49 |
+
|
50 |
+
def __unicode__(self):
|
51 |
+
return '%s/%s' % (self.word, self.flag)
|
52 |
+
|
53 |
+
def __repr__(self):
|
54 |
+
return 'pair(%r, %r)' % (self.word, self.flag)
|
55 |
+
|
56 |
+
def __str__(self):
|
57 |
+
if PY2:
|
58 |
+
return self.__unicode__().encode(default_encoding)
|
59 |
+
else:
|
60 |
+
return self.__unicode__()
|
61 |
+
|
62 |
+
def __iter__(self):
|
63 |
+
return iter((self.word, self.flag))
|
64 |
+
|
65 |
+
def __lt__(self, other):
|
66 |
+
return self.word < other.word
|
67 |
+
|
68 |
+
def __eq__(self, other):
|
69 |
+
return isinstance(other, pair) and self.word == other.word and self.flag == other.flag
|
70 |
+
|
71 |
+
def __hash__(self):
|
72 |
+
return hash(self.word)
|
73 |
+
|
74 |
+
def encode(self, arg):
|
75 |
+
return self.__unicode__().encode(arg)
|
76 |
+
|
77 |
+
|
78 |
+
class POSTokenizer(object):
|
79 |
+
|
80 |
+
def __init__(self, tokenizer=None):
|
81 |
+
self.tokenizer = tokenizer or jieba.Tokenizer()
|
82 |
+
self.load_word_tag(self.tokenizer.get_dict_file())
|
83 |
+
|
84 |
+
def __repr__(self):
|
85 |
+
return '<POSTokenizer tokenizer=%r>' % self.tokenizer
|
86 |
+
|
87 |
+
def __getattr__(self, name):
|
88 |
+
if name in ('cut_for_search', 'lcut_for_search', 'tokenize'):
|
89 |
+
# may be possible?
|
90 |
+
raise NotImplementedError
|
91 |
+
return getattr(self.tokenizer, name)
|
92 |
+
|
93 |
+
def initialize(self, dictionary=None):
|
94 |
+
self.tokenizer.initialize(dictionary)
|
95 |
+
self.load_word_tag(self.tokenizer.get_dict_file())
|
96 |
+
|
97 |
+
def load_word_tag(self, f):
|
98 |
+
self.word_tag_tab = {}
|
99 |
+
f_name = resolve_filename(f)
|
100 |
+
for lineno, line in enumerate(f, 1):
|
101 |
+
try:
|
102 |
+
line = line.strip().decode("utf-8")
|
103 |
+
if not line:
|
104 |
+
continue
|
105 |
+
word, _, tag = line.split(" ")
|
106 |
+
self.word_tag_tab[word] = tag
|
107 |
+
except Exception:
|
108 |
+
raise ValueError(
|
109 |
+
'invalid POS dictionary entry in %s at Line %s: %s' % (f_name, lineno, line))
|
110 |
+
f.close()
|
111 |
+
|
112 |
+
def makesure_userdict_loaded(self):
|
113 |
+
if self.tokenizer.user_word_tag_tab:
|
114 |
+
self.word_tag_tab.update(self.tokenizer.user_word_tag_tab)
|
115 |
+
self.tokenizer.user_word_tag_tab = {}
|
116 |
+
|
117 |
+
def __cut(self, sentence):
|
118 |
+
prob, pos_list = viterbi(
|
119 |
+
sentence, char_state_tab_P, start_P, trans_P, emit_P)
|
120 |
+
begin, nexti = 0, 0
|
121 |
+
|
122 |
+
for i, char in enumerate(sentence):
|
123 |
+
pos = pos_list[i][0]
|
124 |
+
if pos == 'B':
|
125 |
+
begin = i
|
126 |
+
elif pos == 'E':
|
127 |
+
yield pair(sentence[begin:i + 1], pos_list[i][1])
|
128 |
+
nexti = i + 1
|
129 |
+
elif pos == 'S':
|
130 |
+
yield pair(char, pos_list[i][1])
|
131 |
+
nexti = i + 1
|
132 |
+
if nexti < len(sentence):
|
133 |
+
yield pair(sentence[nexti:], pos_list[nexti][1])
|
134 |
+
|
135 |
+
def __cut_detail(self, sentence):
|
136 |
+
blocks = re_han_detail.split(sentence)
|
137 |
+
for blk in blocks:
|
138 |
+
if re_han_detail.match(blk):
|
139 |
+
for word in self.__cut(blk):
|
140 |
+
yield word
|
141 |
+
else:
|
142 |
+
tmp = re_skip_detail.split(blk)
|
143 |
+
for x in tmp:
|
144 |
+
if x:
|
145 |
+
if re_num.match(x):
|
146 |
+
yield pair(x, 'm')
|
147 |
+
elif re_eng.match(x):
|
148 |
+
yield pair(x, 'eng')
|
149 |
+
else:
|
150 |
+
yield pair(x, 'x')
|
151 |
+
|
152 |
+
def __cut_DAG_NO_HMM(self, sentence):
|
153 |
+
DAG = self.tokenizer.get_DAG(sentence)
|
154 |
+
route = {}
|
155 |
+
self.tokenizer.calc(sentence, DAG, route)
|
156 |
+
x = 0
|
157 |
+
N = len(sentence)
|
158 |
+
buf = ''
|
159 |
+
while x < N:
|
160 |
+
y = route[x][1] + 1
|
161 |
+
l_word = sentence[x:y]
|
162 |
+
if re_eng1.match(l_word):
|
163 |
+
buf += l_word
|
164 |
+
x = y
|
165 |
+
else:
|
166 |
+
if buf:
|
167 |
+
yield pair(buf, 'eng')
|
168 |
+
buf = ''
|
169 |
+
yield pair(l_word, self.word_tag_tab.get(l_word, 'x'))
|
170 |
+
x = y
|
171 |
+
if buf:
|
172 |
+
yield pair(buf, 'eng')
|
173 |
+
buf = ''
|
174 |
+
|
175 |
+
def __cut_DAG(self, sentence):
|
176 |
+
DAG = self.tokenizer.get_DAG(sentence)
|
177 |
+
route = {}
|
178 |
+
|
179 |
+
self.tokenizer.calc(sentence, DAG, route)
|
180 |
+
|
181 |
+
x = 0
|
182 |
+
buf = ''
|
183 |
+
N = len(sentence)
|
184 |
+
while x < N:
|
185 |
+
y = route[x][1] + 1
|
186 |
+
l_word = sentence[x:y]
|
187 |
+
if y - x == 1:
|
188 |
+
buf += l_word
|
189 |
+
else:
|
190 |
+
if buf:
|
191 |
+
if len(buf) == 1:
|
192 |
+
yield pair(buf, self.word_tag_tab.get(buf, 'x'))
|
193 |
+
elif not self.tokenizer.FREQ.get(buf):
|
194 |
+
recognized = self.__cut_detail(buf)
|
195 |
+
for t in recognized:
|
196 |
+
yield t
|
197 |
+
else:
|
198 |
+
for elem in buf:
|
199 |
+
yield pair(elem, self.word_tag_tab.get(elem, 'x'))
|
200 |
+
buf = ''
|
201 |
+
yield pair(l_word, self.word_tag_tab.get(l_word, 'x'))
|
202 |
+
x = y
|
203 |
+
|
204 |
+
if buf:
|
205 |
+
if len(buf) == 1:
|
206 |
+
yield pair(buf, self.word_tag_tab.get(buf, 'x'))
|
207 |
+
elif not self.tokenizer.FREQ.get(buf):
|
208 |
+
recognized = self.__cut_detail(buf)
|
209 |
+
for t in recognized:
|
210 |
+
yield t
|
211 |
+
else:
|
212 |
+
for elem in buf:
|
213 |
+
yield pair(elem, self.word_tag_tab.get(elem, 'x'))
|
214 |
+
|
215 |
+
def __cut_internal(self, sentence, HMM=True):
|
216 |
+
self.makesure_userdict_loaded()
|
217 |
+
sentence = strdecode(sentence)
|
218 |
+
blocks = re_han_internal.split(sentence)
|
219 |
+
if HMM:
|
220 |
+
cut_blk = self.__cut_DAG
|
221 |
+
else:
|
222 |
+
cut_blk = self.__cut_DAG_NO_HMM
|
223 |
+
|
224 |
+
for blk in blocks:
|
225 |
+
if re_han_internal.match(blk):
|
226 |
+
for word in cut_blk(blk):
|
227 |
+
yield word
|
228 |
+
else:
|
229 |
+
tmp = re_skip_internal.split(blk)
|
230 |
+
for x in tmp:
|
231 |
+
if re_skip_internal.match(x):
|
232 |
+
yield pair(x, 'x')
|
233 |
+
else:
|
234 |
+
for xx in x:
|
235 |
+
if re_num.match(xx):
|
236 |
+
yield pair(xx, 'm')
|
237 |
+
elif re_eng.match(x):
|
238 |
+
yield pair(xx, 'eng')
|
239 |
+
else:
|
240 |
+
yield pair(xx, 'x')
|
241 |
+
|
242 |
+
def _lcut_internal(self, sentence):
|
243 |
+
return list(self.__cut_internal(sentence))
|
244 |
+
|
245 |
+
def _lcut_internal_no_hmm(self, sentence):
|
246 |
+
return list(self.__cut_internal(sentence, False))
|
247 |
+
|
248 |
+
def cut(self, sentence, HMM=True):
|
249 |
+
for w in self.__cut_internal(sentence, HMM=HMM):
|
250 |
+
yield w
|
251 |
+
|
252 |
+
def lcut(self, *args, **kwargs):
|
253 |
+
return list(self.cut(*args, **kwargs))
|
254 |
+
|
255 |
+
# default Tokenizer instance
|
256 |
+
|
257 |
+
dt = POSTokenizer(jieba.dt)
|
258 |
+
|
259 |
+
# global functions
|
260 |
+
|
261 |
+
initialize = dt.initialize
|
262 |
+
|
263 |
+
|
264 |
+
def _lcut_internal(s):
|
265 |
+
return dt._lcut_internal(s)
|
266 |
+
|
267 |
+
|
268 |
+
def _lcut_internal_no_hmm(s):
|
269 |
+
return dt._lcut_internal_no_hmm(s)
|
270 |
+
|
271 |
+
|
272 |
+
def cut(sentence, HMM=True):
|
273 |
+
"""
|
274 |
+
Global `cut` function that supports parallel processing.
|
275 |
+
Note that this only works using dt, custom POSTokenizer
|
276 |
+
instances are not supported.
|
277 |
+
"""
|
278 |
+
global dt
|
279 |
+
if jieba.pool is None:
|
280 |
+
for w in dt.cut(sentence, HMM=HMM):
|
281 |
+
yield w
|
282 |
+
else:
|
283 |
+
parts = strdecode(sentence).splitlines(True)
|
284 |
+
if HMM:
|
285 |
+
result = jieba.pool.map(_lcut_internal, parts)
|
286 |
+
else:
|
287 |
+
result = jieba.pool.map(_lcut_internal_no_hmm, parts)
|
288 |
+
for r in result:
|
289 |
+
for w in r:
|
290 |
+
yield w
|
291 |
+
|
292 |
+
|
293 |
+
def lcut(sentence, HMM=True):
|
294 |
+
return list(cut(sentence, HMM))
|
jieba/posseg/char_state_tab.p
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/posseg/char_state_tab.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/posseg/prob_emit.p
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/posseg/prob_emit.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/posseg/prob_start.p
ADDED
@@ -0,0 +1,1094 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
(dp0
|
2 |
+
(S'B'
|
3 |
+
p1
|
4 |
+
S'a'
|
5 |
+
p2
|
6 |
+
tp3
|
7 |
+
F-4.762305214596967
|
8 |
+
s(g1
|
9 |
+
S'ad'
|
10 |
+
p4
|
11 |
+
tp5
|
12 |
+
F-6.680066036784177
|
13 |
+
s(g1
|
14 |
+
S'ag'
|
15 |
+
p6
|
16 |
+
tp7
|
17 |
+
F-3.14e+100
|
18 |
+
s(g1
|
19 |
+
S'an'
|
20 |
+
p8
|
21 |
+
tp9
|
22 |
+
F-8.697083223018778
|
23 |
+
s(g1
|
24 |
+
S'b'
|
25 |
+
p10
|
26 |
+
tp11
|
27 |
+
F-5.018374362109218
|
28 |
+
s(g1
|
29 |
+
S'bg'
|
30 |
+
p12
|
31 |
+
tp13
|
32 |
+
F-3.14e+100
|
33 |
+
s(g1
|
34 |
+
S'c'
|
35 |
+
p14
|
36 |
+
tp15
|
37 |
+
F-3.423880184954888
|
38 |
+
s(g1
|
39 |
+
S'd'
|
40 |
+
p16
|
41 |
+
tp17
|
42 |
+
F-3.9750475297585357
|
43 |
+
s(g1
|
44 |
+
S'df'
|
45 |
+
p18
|
46 |
+
tp19
|
47 |
+
F-8.888974230828882
|
48 |
+
s(g1
|
49 |
+
S'dg'
|
50 |
+
p20
|
51 |
+
tp21
|
52 |
+
F-3.14e+100
|
53 |
+
s(g1
|
54 |
+
S'e'
|
55 |
+
p22
|
56 |
+
tp23
|
57 |
+
F-8.563551830394255
|
58 |
+
s(g1
|
59 |
+
S'en'
|
60 |
+
p24
|
61 |
+
tp25
|
62 |
+
F-3.14e+100
|
63 |
+
s(g1
|
64 |
+
S'f'
|
65 |
+
p26
|
66 |
+
tp27
|
67 |
+
F-5.491630418482717
|
68 |
+
s(g1
|
69 |
+
S'g'
|
70 |
+
p28
|
71 |
+
tp29
|
72 |
+
F-3.14e+100
|
73 |
+
s(g1
|
74 |
+
S'h'
|
75 |
+
p30
|
76 |
+
tp31
|
77 |
+
F-13.533365129970255
|
78 |
+
s(g1
|
79 |
+
S'i'
|
80 |
+
p32
|
81 |
+
tp33
|
82 |
+
F-6.1157847275557105
|
83 |
+
s(g1
|
84 |
+
S'in'
|
85 |
+
p34
|
86 |
+
tp35
|
87 |
+
F-3.14e+100
|
88 |
+
s(g1
|
89 |
+
S'j'
|
90 |
+
p36
|
91 |
+
tp37
|
92 |
+
F-5.0576191284681915
|
93 |
+
s(g1
|
94 |
+
S'jn'
|
95 |
+
p38
|
96 |
+
tp39
|
97 |
+
F-3.14e+100
|
98 |
+
s(g1
|
99 |
+
S'k'
|
100 |
+
p40
|
101 |
+
tp41
|
102 |
+
F-3.14e+100
|
103 |
+
s(g1
|
104 |
+
S'l'
|
105 |
+
p42
|
106 |
+
tp43
|
107 |
+
F-4.905883584659895
|
108 |
+
s(g1
|
109 |
+
S'ln'
|
110 |
+
p44
|
111 |
+
tp45
|
112 |
+
F-3.14e+100
|
113 |
+
s(g1
|
114 |
+
S'm'
|
115 |
+
p46
|
116 |
+
tp47
|
117 |
+
F-3.6524299819046386
|
118 |
+
s(g1
|
119 |
+
S'mg'
|
120 |
+
p48
|
121 |
+
tp49
|
122 |
+
F-3.14e+100
|
123 |
+
s(g1
|
124 |
+
S'mq'
|
125 |
+
p50
|
126 |
+
tp51
|
127 |
+
F-6.78695300139688
|
128 |
+
s(g1
|
129 |
+
S'n'
|
130 |
+
p52
|
131 |
+
tp53
|
132 |
+
F-1.6966257797548328
|
133 |
+
s(g1
|
134 |
+
S'ng'
|
135 |
+
p54
|
136 |
+
tp55
|
137 |
+
F-3.14e+100
|
138 |
+
s(g1
|
139 |
+
S'nr'
|
140 |
+
p56
|
141 |
+
tp57
|
142 |
+
F-2.2310495913769506
|
143 |
+
s(g1
|
144 |
+
S'nrfg'
|
145 |
+
p58
|
146 |
+
tp59
|
147 |
+
F-5.873722175405573
|
148 |
+
s(g1
|
149 |
+
S'nrt'
|
150 |
+
p60
|
151 |
+
tp61
|
152 |
+
F-4.985642733519195
|
153 |
+
s(g1
|
154 |
+
S'ns'
|
155 |
+
p62
|
156 |
+
tp63
|
157 |
+
F-2.8228438314969213
|
158 |
+
s(g1
|
159 |
+
S'nt'
|
160 |
+
p64
|
161 |
+
tp65
|
162 |
+
F-4.846091668182416
|
163 |
+
s(g1
|
164 |
+
S'nz'
|
165 |
+
p66
|
166 |
+
tp67
|
167 |
+
F-3.94698846057672
|
168 |
+
s(g1
|
169 |
+
S'o'
|
170 |
+
p68
|
171 |
+
tp69
|
172 |
+
F-8.433498702146057
|
173 |
+
s(g1
|
174 |
+
S'p'
|
175 |
+
p70
|
176 |
+
tp71
|
177 |
+
F-4.200984132085048
|
178 |
+
s(g1
|
179 |
+
S'q'
|
180 |
+
p72
|
181 |
+
tp73
|
182 |
+
F-6.998123858956596
|
183 |
+
s(g1
|
184 |
+
S'qe'
|
185 |
+
p74
|
186 |
+
tp75
|
187 |
+
F-3.14e+100
|
188 |
+
s(g1
|
189 |
+
S'qg'
|
190 |
+
p76
|
191 |
+
tp77
|
192 |
+
F-3.14e+100
|
193 |
+
s(g1
|
194 |
+
S'r'
|
195 |
+
p78
|
196 |
+
tp79
|
197 |
+
F-3.4098187790818413
|
198 |
+
s(g1
|
199 |
+
S'rg'
|
200 |
+
p80
|
201 |
+
tp81
|
202 |
+
F-3.14e+100
|
203 |
+
s(g1
|
204 |
+
S'rr'
|
205 |
+
p82
|
206 |
+
tp83
|
207 |
+
F-12.434752841302146
|
208 |
+
s(g1
|
209 |
+
S'rz'
|
210 |
+
p84
|
211 |
+
tp85
|
212 |
+
F-7.946116471570005
|
213 |
+
s(g1
|
214 |
+
S's'
|
215 |
+
p86
|
216 |
+
tp87
|
217 |
+
F-5.522673590839954
|
218 |
+
s(g1
|
219 |
+
S't'
|
220 |
+
p88
|
221 |
+
tp89
|
222 |
+
F-3.3647479094528574
|
223 |
+
s(g1
|
224 |
+
S'tg'
|
225 |
+
p90
|
226 |
+
tp91
|
227 |
+
F-3.14e+100
|
228 |
+
s(g1
|
229 |
+
S'u'
|
230 |
+
p92
|
231 |
+
tp93
|
232 |
+
F-9.163917277503234
|
233 |
+
s(g1
|
234 |
+
S'ud'
|
235 |
+
p94
|
236 |
+
tp95
|
237 |
+
F-3.14e+100
|
238 |
+
s(g1
|
239 |
+
S'ug'
|
240 |
+
p96
|
241 |
+
tp97
|
242 |
+
F-3.14e+100
|
243 |
+
s(g1
|
244 |
+
S'uj'
|
245 |
+
p98
|
246 |
+
tp99
|
247 |
+
F-3.14e+100
|
248 |
+
s(g1
|
249 |
+
S'ul'
|
250 |
+
p100
|
251 |
+
tp101
|
252 |
+
F-3.14e+100
|
253 |
+
s(g1
|
254 |
+
S'uv'
|
255 |
+
p102
|
256 |
+
tp103
|
257 |
+
F-3.14e+100
|
258 |
+
s(g1
|
259 |
+
S'uz'
|
260 |
+
p104
|
261 |
+
tp105
|
262 |
+
F-3.14e+100
|
263 |
+
s(g1
|
264 |
+
S'v'
|
265 |
+
p106
|
266 |
+
tp107
|
267 |
+
F-2.6740584874265685
|
268 |
+
s(g1
|
269 |
+
S'vd'
|
270 |
+
p108
|
271 |
+
tp109
|
272 |
+
F-9.044728760238115
|
273 |
+
s(g1
|
274 |
+
S'vg'
|
275 |
+
p110
|
276 |
+
tp111
|
277 |
+
F-3.14e+100
|
278 |
+
s(g1
|
279 |
+
S'vi'
|
280 |
+
p112
|
281 |
+
tp113
|
282 |
+
F-12.434752841302146
|
283 |
+
s(g1
|
284 |
+
S'vn'
|
285 |
+
p114
|
286 |
+
tp115
|
287 |
+
F-4.3315610890163585
|
288 |
+
s(g1
|
289 |
+
S'vq'
|
290 |
+
p116
|
291 |
+
tp117
|
292 |
+
F-12.147070768850364
|
293 |
+
s(g1
|
294 |
+
S'w'
|
295 |
+
p118
|
296 |
+
tp119
|
297 |
+
F-3.14e+100
|
298 |
+
s(g1
|
299 |
+
S'x'
|
300 |
+
p120
|
301 |
+
tp121
|
302 |
+
F-3.14e+100
|
303 |
+
s(g1
|
304 |
+
S'y'
|
305 |
+
p122
|
306 |
+
tp123
|
307 |
+
F-9.844485675856319
|
308 |
+
s(g1
|
309 |
+
S'yg'
|
310 |
+
p124
|
311 |
+
tp125
|
312 |
+
F-3.14e+100
|
313 |
+
s(g1
|
314 |
+
S'z'
|
315 |
+
p126
|
316 |
+
tp127
|
317 |
+
F-7.045681111485645
|
318 |
+
s(g1
|
319 |
+
S'zg'
|
320 |
+
p128
|
321 |
+
tp129
|
322 |
+
F-3.14e+100
|
323 |
+
s(S'E'
|
324 |
+
p130
|
325 |
+
g2
|
326 |
+
tp131
|
327 |
+
F-3.14e+100
|
328 |
+
s(g130
|
329 |
+
g4
|
330 |
+
tp132
|
331 |
+
F-3.14e+100
|
332 |
+
s(g130
|
333 |
+
g6
|
334 |
+
tp133
|
335 |
+
F-3.14e+100
|
336 |
+
s(g130
|
337 |
+
g8
|
338 |
+
tp134
|
339 |
+
F-3.14e+100
|
340 |
+
s(g130
|
341 |
+
g10
|
342 |
+
tp135
|
343 |
+
F-3.14e+100
|
344 |
+
s(g130
|
345 |
+
g12
|
346 |
+
tp136
|
347 |
+
F-3.14e+100
|
348 |
+
s(g130
|
349 |
+
g14
|
350 |
+
tp137
|
351 |
+
F-3.14e+100
|
352 |
+
s(g130
|
353 |
+
g16
|
354 |
+
tp138
|
355 |
+
F-3.14e+100
|
356 |
+
s(g130
|
357 |
+
g18
|
358 |
+
tp139
|
359 |
+
F-3.14e+100
|
360 |
+
s(g130
|
361 |
+
g20
|
362 |
+
tp140
|
363 |
+
F-3.14e+100
|
364 |
+
s(g130
|
365 |
+
g22
|
366 |
+
tp141
|
367 |
+
F-3.14e+100
|
368 |
+
s(g130
|
369 |
+
g24
|
370 |
+
tp142
|
371 |
+
F-3.14e+100
|
372 |
+
s(g130
|
373 |
+
g26
|
374 |
+
tp143
|
375 |
+
F-3.14e+100
|
376 |
+
s(g130
|
377 |
+
g28
|
378 |
+
tp144
|
379 |
+
F-3.14e+100
|
380 |
+
s(g130
|
381 |
+
g30
|
382 |
+
tp145
|
383 |
+
F-3.14e+100
|
384 |
+
s(g130
|
385 |
+
g32
|
386 |
+
tp146
|
387 |
+
F-3.14e+100
|
388 |
+
s(g130
|
389 |
+
g34
|
390 |
+
tp147
|
391 |
+
F-3.14e+100
|
392 |
+
s(g130
|
393 |
+
g36
|
394 |
+
tp148
|
395 |
+
F-3.14e+100
|
396 |
+
s(g130
|
397 |
+
g38
|
398 |
+
tp149
|
399 |
+
F-3.14e+100
|
400 |
+
s(g130
|
401 |
+
g40
|
402 |
+
tp150
|
403 |
+
F-3.14e+100
|
404 |
+
s(g130
|
405 |
+
g42
|
406 |
+
tp151
|
407 |
+
F-3.14e+100
|
408 |
+
s(g130
|
409 |
+
g44
|
410 |
+
tp152
|
411 |
+
F-3.14e+100
|
412 |
+
s(g130
|
413 |
+
g46
|
414 |
+
tp153
|
415 |
+
F-3.14e+100
|
416 |
+
s(g130
|
417 |
+
g48
|
418 |
+
tp154
|
419 |
+
F-3.14e+100
|
420 |
+
s(g130
|
421 |
+
g50
|
422 |
+
tp155
|
423 |
+
F-3.14e+100
|
424 |
+
s(g130
|
425 |
+
g52
|
426 |
+
tp156
|
427 |
+
F-3.14e+100
|
428 |
+
s(g130
|
429 |
+
g54
|
430 |
+
tp157
|
431 |
+
F-3.14e+100
|
432 |
+
s(g130
|
433 |
+
g56
|
434 |
+
tp158
|
435 |
+
F-3.14e+100
|
436 |
+
s(g130
|
437 |
+
g58
|
438 |
+
tp159
|
439 |
+
F-3.14e+100
|
440 |
+
s(g130
|
441 |
+
g60
|
442 |
+
tp160
|
443 |
+
F-3.14e+100
|
444 |
+
s(g130
|
445 |
+
g62
|
446 |
+
tp161
|
447 |
+
F-3.14e+100
|
448 |
+
s(g130
|
449 |
+
g64
|
450 |
+
tp162
|
451 |
+
F-3.14e+100
|
452 |
+
s(g130
|
453 |
+
g66
|
454 |
+
tp163
|
455 |
+
F-3.14e+100
|
456 |
+
s(g130
|
457 |
+
g68
|
458 |
+
tp164
|
459 |
+
F-3.14e+100
|
460 |
+
s(g130
|
461 |
+
g70
|
462 |
+
tp165
|
463 |
+
F-3.14e+100
|
464 |
+
s(g130
|
465 |
+
g72
|
466 |
+
tp166
|
467 |
+
F-3.14e+100
|
468 |
+
s(g130
|
469 |
+
g74
|
470 |
+
tp167
|
471 |
+
F-3.14e+100
|
472 |
+
s(g130
|
473 |
+
g76
|
474 |
+
tp168
|
475 |
+
F-3.14e+100
|
476 |
+
s(g130
|
477 |
+
g78
|
478 |
+
tp169
|
479 |
+
F-3.14e+100
|
480 |
+
s(g130
|
481 |
+
g80
|
482 |
+
tp170
|
483 |
+
F-3.14e+100
|
484 |
+
s(g130
|
485 |
+
g82
|
486 |
+
tp171
|
487 |
+
F-3.14e+100
|
488 |
+
s(g130
|
489 |
+
g84
|
490 |
+
tp172
|
491 |
+
F-3.14e+100
|
492 |
+
s(g130
|
493 |
+
g86
|
494 |
+
tp173
|
495 |
+
F-3.14e+100
|
496 |
+
s(g130
|
497 |
+
g88
|
498 |
+
tp174
|
499 |
+
F-3.14e+100
|
500 |
+
s(g130
|
501 |
+
g90
|
502 |
+
tp175
|
503 |
+
F-3.14e+100
|
504 |
+
s(g130
|
505 |
+
g92
|
506 |
+
tp176
|
507 |
+
F-3.14e+100
|
508 |
+
s(g130
|
509 |
+
g94
|
510 |
+
tp177
|
511 |
+
F-3.14e+100
|
512 |
+
s(g130
|
513 |
+
g96
|
514 |
+
tp178
|
515 |
+
F-3.14e+100
|
516 |
+
s(g130
|
517 |
+
g98
|
518 |
+
tp179
|
519 |
+
F-3.14e+100
|
520 |
+
s(g130
|
521 |
+
g100
|
522 |
+
tp180
|
523 |
+
F-3.14e+100
|
524 |
+
s(g130
|
525 |
+
g102
|
526 |
+
tp181
|
527 |
+
F-3.14e+100
|
528 |
+
s(g130
|
529 |
+
g104
|
530 |
+
tp182
|
531 |
+
F-3.14e+100
|
532 |
+
s(g130
|
533 |
+
g106
|
534 |
+
tp183
|
535 |
+
F-3.14e+100
|
536 |
+
s(g130
|
537 |
+
g108
|
538 |
+
tp184
|
539 |
+
F-3.14e+100
|
540 |
+
s(g130
|
541 |
+
g110
|
542 |
+
tp185
|
543 |
+
F-3.14e+100
|
544 |
+
s(g130
|
545 |
+
g112
|
546 |
+
tp186
|
547 |
+
F-3.14e+100
|
548 |
+
s(g130
|
549 |
+
g114
|
550 |
+
tp187
|
551 |
+
F-3.14e+100
|
552 |
+
s(g130
|
553 |
+
g116
|
554 |
+
tp188
|
555 |
+
F-3.14e+100
|
556 |
+
s(g130
|
557 |
+
g118
|
558 |
+
tp189
|
559 |
+
F-3.14e+100
|
560 |
+
s(g130
|
561 |
+
g120
|
562 |
+
tp190
|
563 |
+
F-3.14e+100
|
564 |
+
s(g130
|
565 |
+
g122
|
566 |
+
tp191
|
567 |
+
F-3.14e+100
|
568 |
+
s(g130
|
569 |
+
g124
|
570 |
+
tp192
|
571 |
+
F-3.14e+100
|
572 |
+
s(g130
|
573 |
+
g126
|
574 |
+
tp193
|
575 |
+
F-3.14e+100
|
576 |
+
s(g130
|
577 |
+
g128
|
578 |
+
tp194
|
579 |
+
F-3.14e+100
|
580 |
+
s(S'M'
|
581 |
+
p195
|
582 |
+
g2
|
583 |
+
tp196
|
584 |
+
F-3.14e+100
|
585 |
+
s(g195
|
586 |
+
g4
|
587 |
+
tp197
|
588 |
+
F-3.14e+100
|
589 |
+
s(g195
|
590 |
+
g6
|
591 |
+
tp198
|
592 |
+
F-3.14e+100
|
593 |
+
s(g195
|
594 |
+
g8
|
595 |
+
tp199
|
596 |
+
F-3.14e+100
|
597 |
+
s(g195
|
598 |
+
g10
|
599 |
+
tp200
|
600 |
+
F-3.14e+100
|
601 |
+
s(g195
|
602 |
+
g12
|
603 |
+
tp201
|
604 |
+
F-3.14e+100
|
605 |
+
s(g195
|
606 |
+
g14
|
607 |
+
tp202
|
608 |
+
F-3.14e+100
|
609 |
+
s(g195
|
610 |
+
g16
|
611 |
+
tp203
|
612 |
+
F-3.14e+100
|
613 |
+
s(g195
|
614 |
+
g18
|
615 |
+
tp204
|
616 |
+
F-3.14e+100
|
617 |
+
s(g195
|
618 |
+
g20
|
619 |
+
tp205
|
620 |
+
F-3.14e+100
|
621 |
+
s(g195
|
622 |
+
g22
|
623 |
+
tp206
|
624 |
+
F-3.14e+100
|
625 |
+
s(g195
|
626 |
+
g24
|
627 |
+
tp207
|
628 |
+
F-3.14e+100
|
629 |
+
s(g195
|
630 |
+
g26
|
631 |
+
tp208
|
632 |
+
F-3.14e+100
|
633 |
+
s(g195
|
634 |
+
g28
|
635 |
+
tp209
|
636 |
+
F-3.14e+100
|
637 |
+
s(g195
|
638 |
+
g30
|
639 |
+
tp210
|
640 |
+
F-3.14e+100
|
641 |
+
s(g195
|
642 |
+
g32
|
643 |
+
tp211
|
644 |
+
F-3.14e+100
|
645 |
+
s(g195
|
646 |
+
g34
|
647 |
+
tp212
|
648 |
+
F-3.14e+100
|
649 |
+
s(g195
|
650 |
+
g36
|
651 |
+
tp213
|
652 |
+
F-3.14e+100
|
653 |
+
s(g195
|
654 |
+
g38
|
655 |
+
tp214
|
656 |
+
F-3.14e+100
|
657 |
+
s(g195
|
658 |
+
g40
|
659 |
+
tp215
|
660 |
+
F-3.14e+100
|
661 |
+
s(g195
|
662 |
+
g42
|
663 |
+
tp216
|
664 |
+
F-3.14e+100
|
665 |
+
s(g195
|
666 |
+
g44
|
667 |
+
tp217
|
668 |
+
F-3.14e+100
|
669 |
+
s(g195
|
670 |
+
g46
|
671 |
+
tp218
|
672 |
+
F-3.14e+100
|
673 |
+
s(g195
|
674 |
+
g48
|
675 |
+
tp219
|
676 |
+
F-3.14e+100
|
677 |
+
s(g195
|
678 |
+
g50
|
679 |
+
tp220
|
680 |
+
F-3.14e+100
|
681 |
+
s(g195
|
682 |
+
g52
|
683 |
+
tp221
|
684 |
+
F-3.14e+100
|
685 |
+
s(g195
|
686 |
+
g54
|
687 |
+
tp222
|
688 |
+
F-3.14e+100
|
689 |
+
s(g195
|
690 |
+
g56
|
691 |
+
tp223
|
692 |
+
F-3.14e+100
|
693 |
+
s(g195
|
694 |
+
g58
|
695 |
+
tp224
|
696 |
+
F-3.14e+100
|
697 |
+
s(g195
|
698 |
+
g60
|
699 |
+
tp225
|
700 |
+
F-3.14e+100
|
701 |
+
s(g195
|
702 |
+
g62
|
703 |
+
tp226
|
704 |
+
F-3.14e+100
|
705 |
+
s(g195
|
706 |
+
g64
|
707 |
+
tp227
|
708 |
+
F-3.14e+100
|
709 |
+
s(g195
|
710 |
+
g66
|
711 |
+
tp228
|
712 |
+
F-3.14e+100
|
713 |
+
s(g195
|
714 |
+
g68
|
715 |
+
tp229
|
716 |
+
F-3.14e+100
|
717 |
+
s(g195
|
718 |
+
g70
|
719 |
+
tp230
|
720 |
+
F-3.14e+100
|
721 |
+
s(g195
|
722 |
+
g72
|
723 |
+
tp231
|
724 |
+
F-3.14e+100
|
725 |
+
s(g195
|
726 |
+
g74
|
727 |
+
tp232
|
728 |
+
F-3.14e+100
|
729 |
+
s(g195
|
730 |
+
g76
|
731 |
+
tp233
|
732 |
+
F-3.14e+100
|
733 |
+
s(g195
|
734 |
+
g78
|
735 |
+
tp234
|
736 |
+
F-3.14e+100
|
737 |
+
s(g195
|
738 |
+
g80
|
739 |
+
tp235
|
740 |
+
F-3.14e+100
|
741 |
+
s(g195
|
742 |
+
g82
|
743 |
+
tp236
|
744 |
+
F-3.14e+100
|
745 |
+
s(g195
|
746 |
+
g84
|
747 |
+
tp237
|
748 |
+
F-3.14e+100
|
749 |
+
s(g195
|
750 |
+
g86
|
751 |
+
tp238
|
752 |
+
F-3.14e+100
|
753 |
+
s(g195
|
754 |
+
g88
|
755 |
+
tp239
|
756 |
+
F-3.14e+100
|
757 |
+
s(g195
|
758 |
+
g90
|
759 |
+
tp240
|
760 |
+
F-3.14e+100
|
761 |
+
s(g195
|
762 |
+
g92
|
763 |
+
tp241
|
764 |
+
F-3.14e+100
|
765 |
+
s(g195
|
766 |
+
g94
|
767 |
+
tp242
|
768 |
+
F-3.14e+100
|
769 |
+
s(g195
|
770 |
+
g96
|
771 |
+
tp243
|
772 |
+
F-3.14e+100
|
773 |
+
s(g195
|
774 |
+
g98
|
775 |
+
tp244
|
776 |
+
F-3.14e+100
|
777 |
+
s(g195
|
778 |
+
g100
|
779 |
+
tp245
|
780 |
+
F-3.14e+100
|
781 |
+
s(g195
|
782 |
+
g102
|
783 |
+
tp246
|
784 |
+
F-3.14e+100
|
785 |
+
s(g195
|
786 |
+
g104
|
787 |
+
tp247
|
788 |
+
F-3.14e+100
|
789 |
+
s(g195
|
790 |
+
g106
|
791 |
+
tp248
|
792 |
+
F-3.14e+100
|
793 |
+
s(g195
|
794 |
+
g108
|
795 |
+
tp249
|
796 |
+
F-3.14e+100
|
797 |
+
s(g195
|
798 |
+
g110
|
799 |
+
tp250
|
800 |
+
F-3.14e+100
|
801 |
+
s(g195
|
802 |
+
g112
|
803 |
+
tp251
|
804 |
+
F-3.14e+100
|
805 |
+
s(g195
|
806 |
+
g114
|
807 |
+
tp252
|
808 |
+
F-3.14e+100
|
809 |
+
s(g195
|
810 |
+
g116
|
811 |
+
tp253
|
812 |
+
F-3.14e+100
|
813 |
+
s(g195
|
814 |
+
g118
|
815 |
+
tp254
|
816 |
+
F-3.14e+100
|
817 |
+
s(g195
|
818 |
+
g120
|
819 |
+
tp255
|
820 |
+
F-3.14e+100
|
821 |
+
s(g195
|
822 |
+
g122
|
823 |
+
tp256
|
824 |
+
F-3.14e+100
|
825 |
+
s(g195
|
826 |
+
g124
|
827 |
+
tp257
|
828 |
+
F-3.14e+100
|
829 |
+
s(g195
|
830 |
+
g126
|
831 |
+
tp258
|
832 |
+
F-3.14e+100
|
833 |
+
s(g195
|
834 |
+
g128
|
835 |
+
tp259
|
836 |
+
F-3.14e+100
|
837 |
+
s(S'S'
|
838 |
+
p260
|
839 |
+
g2
|
840 |
+
tp261
|
841 |
+
F-3.9025396831295227
|
842 |
+
s(g260
|
843 |
+
g4
|
844 |
+
tp262
|
845 |
+
F-11.048458480182255
|
846 |
+
s(g260
|
847 |
+
g6
|
848 |
+
tp263
|
849 |
+
F-6.954113917960154
|
850 |
+
s(g260
|
851 |
+
g8
|
852 |
+
tp264
|
853 |
+
F-12.84021794941031
|
854 |
+
s(g260
|
855 |
+
g10
|
856 |
+
tp265
|
857 |
+
F-6.472888763970454
|
858 |
+
s(g260
|
859 |
+
g12
|
860 |
+
tp266
|
861 |
+
F-3.14e+100
|
862 |
+
s(g260
|
863 |
+
g14
|
864 |
+
tp267
|
865 |
+
F-4.786966795861212
|
866 |
+
s(g260
|
867 |
+
g16
|
868 |
+
tp268
|
869 |
+
F-3.903919764181873
|
870 |
+
s(g260
|
871 |
+
g18
|
872 |
+
tp269
|
873 |
+
F-3.14e+100
|
874 |
+
s(g260
|
875 |
+
g20
|
876 |
+
tp270
|
877 |
+
F-8.948397651299683
|
878 |
+
s(g260
|
879 |
+
g22
|
880 |
+
tp271
|
881 |
+
F-5.942513006281674
|
882 |
+
s(g260
|
883 |
+
g24
|
884 |
+
tp272
|
885 |
+
F-3.14e+100
|
886 |
+
s(g260
|
887 |
+
g26
|
888 |
+
tp273
|
889 |
+
F-5.194820249981676
|
890 |
+
s(g260
|
891 |
+
g28
|
892 |
+
tp274
|
893 |
+
F-6.507826815331734
|
894 |
+
s(g260
|
895 |
+
g30
|
896 |
+
tp275
|
897 |
+
F-8.650563207383884
|
898 |
+
s(g260
|
899 |
+
g32
|
900 |
+
tp276
|
901 |
+
F-3.14e+100
|
902 |
+
s(g260
|
903 |
+
g34
|
904 |
+
tp277
|
905 |
+
F-3.14e+100
|
906 |
+
s(g260
|
907 |
+
g36
|
908 |
+
tp278
|
909 |
+
F-4.911992119644354
|
910 |
+
s(g260
|
911 |
+
g38
|
912 |
+
tp279
|
913 |
+
F-3.14e+100
|
914 |
+
s(g260
|
915 |
+
g40
|
916 |
+
tp280
|
917 |
+
F-6.940320595827818
|
918 |
+
s(g260
|
919 |
+
g42
|
920 |
+
tp281
|
921 |
+
F-3.14e+100
|
922 |
+
s(g260
|
923 |
+
g44
|
924 |
+
tp282
|
925 |
+
F-3.14e+100
|
926 |
+
s(g260
|
927 |
+
g46
|
928 |
+
tp283
|
929 |
+
F-3.269200652116097
|
930 |
+
s(g260
|
931 |
+
g48
|
932 |
+
tp284
|
933 |
+
F-10.825314928868044
|
934 |
+
s(g260
|
935 |
+
g50
|
936 |
+
tp285
|
937 |
+
F-3.14e+100
|
938 |
+
s(g260
|
939 |
+
g52
|
940 |
+
tp286
|
941 |
+
F-3.8551483897645107
|
942 |
+
s(g260
|
943 |
+
g54
|
944 |
+
tp287
|
945 |
+
F-4.913434861102905
|
946 |
+
s(g260
|
947 |
+
g56
|
948 |
+
tp288
|
949 |
+
F-4.483663103956885
|
950 |
+
s(g260
|
951 |
+
g58
|
952 |
+
tp289
|
953 |
+
F-3.14e+100
|
954 |
+
s(g260
|
955 |
+
g60
|
956 |
+
tp290
|
957 |
+
F-3.14e+100
|
958 |
+
s(g260
|
959 |
+
g62
|
960 |
+
tp291
|
961 |
+
F-3.14e+100
|
962 |
+
s(g260
|
963 |
+
g64
|
964 |
+
tp292
|
965 |
+
F-12.147070768850364
|
966 |
+
s(g260
|
967 |
+
g66
|
968 |
+
tp293
|
969 |
+
F-3.14e+100
|
970 |
+
s(g260
|
971 |
+
g68
|
972 |
+
tp294
|
973 |
+
F-8.464460927750023
|
974 |
+
s(g260
|
975 |
+
g70
|
976 |
+
tp295
|
977 |
+
F-2.9868401813596317
|
978 |
+
s(g260
|
979 |
+
g72
|
980 |
+
tp296
|
981 |
+
F-4.888658618255058
|
982 |
+
s(g260
|
983 |
+
g74
|
984 |
+
tp297
|
985 |
+
F-3.14e+100
|
986 |
+
s(g260
|
987 |
+
g76
|
988 |
+
tp298
|
989 |
+
F-3.14e+100
|
990 |
+
s(g260
|
991 |
+
g78
|
992 |
+
tp299
|
993 |
+
F-2.7635336784127853
|
994 |
+
s(g260
|
995 |
+
g80
|
996 |
+
tp300
|
997 |
+
F-10.275268591948773
|
998 |
+
s(g260
|
999 |
+
g82
|
1000 |
+
tp301
|
1001 |
+
F-3.14e+100
|
1002 |
+
s(g260
|
1003 |
+
g84
|
1004 |
+
tp302
|
1005 |
+
F-3.14e+100
|
1006 |
+
s(g260
|
1007 |
+
g86
|
1008 |
+
tp303
|
1009 |
+
F-3.14e+100
|
1010 |
+
s(g260
|
1011 |
+
g88
|
1012 |
+
tp304
|
1013 |
+
F-3.14e+100
|
1014 |
+
s(g260
|
1015 |
+
g90
|
1016 |
+
tp305
|
1017 |
+
F-6.272842531880403
|
1018 |
+
s(g260
|
1019 |
+
g92
|
1020 |
+
tp306
|
1021 |
+
F-6.940320595827818
|
1022 |
+
s(g260
|
1023 |
+
g94
|
1024 |
+
tp307
|
1025 |
+
F-7.728230161053767
|
1026 |
+
s(g260
|
1027 |
+
g96
|
1028 |
+
tp308
|
1029 |
+
F-7.5394037026636855
|
1030 |
+
s(g260
|
1031 |
+
g98
|
1032 |
+
tp309
|
1033 |
+
F-6.85251045118004
|
1034 |
+
s(g260
|
1035 |
+
g100
|
1036 |
+
tp310
|
1037 |
+
F-8.4153713175535
|
1038 |
+
s(g260
|
1039 |
+
g102
|
1040 |
+
tp311
|
1041 |
+
F-8.15808672228609
|
1042 |
+
s(g260
|
1043 |
+
g104
|
1044 |
+
tp312
|
1045 |
+
F-9.299258625372996
|
1046 |
+
s(g260
|
1047 |
+
g106
|
1048 |
+
tp313
|
1049 |
+
F-3.053292303412302
|
1050 |
+
s(g260
|
1051 |
+
g108
|
1052 |
+
tp314
|
1053 |
+
F-3.14e+100
|
1054 |
+
s(g260
|
1055 |
+
g110
|
1056 |
+
tp315
|
1057 |
+
F-5.9430181843676895
|
1058 |
+
s(g260
|
1059 |
+
g112
|
1060 |
+
tp316
|
1061 |
+
F-3.14e+100
|
1062 |
+
s(g260
|
1063 |
+
g114
|
1064 |
+
tp317
|
1065 |
+
F-11.453923588290419
|
1066 |
+
s(g260
|
1067 |
+
g116
|
1068 |
+
tp318
|
1069 |
+
F-3.14e+100
|
1070 |
+
s(g260
|
1071 |
+
g118
|
1072 |
+
tp319
|
1073 |
+
F-3.14e+100
|
1074 |
+
s(g260
|
1075 |
+
g120
|
1076 |
+
tp320
|
1077 |
+
F-8.427419656069674
|
1078 |
+
s(g260
|
1079 |
+
g122
|
1080 |
+
tp321
|
1081 |
+
F-6.1970794699489575
|
1082 |
+
s(g260
|
1083 |
+
g124
|
1084 |
+
tp322
|
1085 |
+
F-13.533365129970255
|
1086 |
+
s(g260
|
1087 |
+
g126
|
1088 |
+
tp323
|
1089 |
+
F-3.14e+100
|
1090 |
+
s(g260
|
1091 |
+
g128
|
1092 |
+
tp324
|
1093 |
+
F-3.14e+100
|
1094 |
+
s.
|
jieba/posseg/prob_start.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
P={('B', 'a'): -4.762305214596967,
|
2 |
+
('B', 'ad'): -6.680066036784177,
|
3 |
+
('B', 'ag'): -3.14e+100,
|
4 |
+
('B', 'an'): -8.697083223018778,
|
5 |
+
('B', 'b'): -5.018374362109218,
|
6 |
+
('B', 'bg'): -3.14e+100,
|
7 |
+
('B', 'c'): -3.423880184954888,
|
8 |
+
('B', 'd'): -3.9750475297585357,
|
9 |
+
('B', 'df'): -8.888974230828882,
|
10 |
+
('B', 'dg'): -3.14e+100,
|
11 |
+
('B', 'e'): -8.563551830394255,
|
12 |
+
('B', 'en'): -3.14e+100,
|
13 |
+
('B', 'f'): -5.491630418482717,
|
14 |
+
('B', 'g'): -3.14e+100,
|
15 |
+
('B', 'h'): -13.533365129970255,
|
16 |
+
('B', 'i'): -6.1157847275557105,
|
17 |
+
('B', 'in'): -3.14e+100,
|
18 |
+
('B', 'j'): -5.0576191284681915,
|
19 |
+
('B', 'jn'): -3.14e+100,
|
20 |
+
('B', 'k'): -3.14e+100,
|
21 |
+
('B', 'l'): -4.905883584659895,
|
22 |
+
('B', 'ln'): -3.14e+100,
|
23 |
+
('B', 'm'): -3.6524299819046386,
|
24 |
+
('B', 'mg'): -3.14e+100,
|
25 |
+
('B', 'mq'): -6.78695300139688,
|
26 |
+
('B', 'n'): -1.6966257797548328,
|
27 |
+
('B', 'ng'): -3.14e+100,
|
28 |
+
('B', 'nr'): -2.2310495913769506,
|
29 |
+
('B', 'nrfg'): -5.873722175405573,
|
30 |
+
('B', 'nrt'): -4.985642733519195,
|
31 |
+
('B', 'ns'): -2.8228438314969213,
|
32 |
+
('B', 'nt'): -4.846091668182416,
|
33 |
+
('B', 'nz'): -3.94698846057672,
|
34 |
+
('B', 'o'): -8.433498702146057,
|
35 |
+
('B', 'p'): -4.200984132085048,
|
36 |
+
('B', 'q'): -6.998123858956596,
|
37 |
+
('B', 'qe'): -3.14e+100,
|
38 |
+
('B', 'qg'): -3.14e+100,
|
39 |
+
('B', 'r'): -3.4098187790818413,
|
40 |
+
('B', 'rg'): -3.14e+100,
|
41 |
+
('B', 'rr'): -12.434752841302146,
|
42 |
+
('B', 'rz'): -7.946116471570005,
|
43 |
+
('B', 's'): -5.522673590839954,
|
44 |
+
('B', 't'): -3.3647479094528574,
|
45 |
+
('B', 'tg'): -3.14e+100,
|
46 |
+
('B', 'u'): -9.163917277503234,
|
47 |
+
('B', 'ud'): -3.14e+100,
|
48 |
+
('B', 'ug'): -3.14e+100,
|
49 |
+
('B', 'uj'): -3.14e+100,
|
50 |
+
('B', 'ul'): -3.14e+100,
|
51 |
+
('B', 'uv'): -3.14e+100,
|
52 |
+
('B', 'uz'): -3.14e+100,
|
53 |
+
('B', 'v'): -2.6740584874265685,
|
54 |
+
('B', 'vd'): -9.044728760238115,
|
55 |
+
('B', 'vg'): -3.14e+100,
|
56 |
+
('B', 'vi'): -12.434752841302146,
|
57 |
+
('B', 'vn'): -4.3315610890163585,
|
58 |
+
('B', 'vq'): -12.147070768850364,
|
59 |
+
('B', 'w'): -3.14e+100,
|
60 |
+
('B', 'x'): -3.14e+100,
|
61 |
+
('B', 'y'): -9.844485675856319,
|
62 |
+
('B', 'yg'): -3.14e+100,
|
63 |
+
('B', 'z'): -7.045681111485645,
|
64 |
+
('B', 'zg'): -3.14e+100,
|
65 |
+
('E', 'a'): -3.14e+100,
|
66 |
+
('E', 'ad'): -3.14e+100,
|
67 |
+
('E', 'ag'): -3.14e+100,
|
68 |
+
('E', 'an'): -3.14e+100,
|
69 |
+
('E', 'b'): -3.14e+100,
|
70 |
+
('E', 'bg'): -3.14e+100,
|
71 |
+
('E', 'c'): -3.14e+100,
|
72 |
+
('E', 'd'): -3.14e+100,
|
73 |
+
('E', 'df'): -3.14e+100,
|
74 |
+
('E', 'dg'): -3.14e+100,
|
75 |
+
('E', 'e'): -3.14e+100,
|
76 |
+
('E', 'en'): -3.14e+100,
|
77 |
+
('E', 'f'): -3.14e+100,
|
78 |
+
('E', 'g'): -3.14e+100,
|
79 |
+
('E', 'h'): -3.14e+100,
|
80 |
+
('E', 'i'): -3.14e+100,
|
81 |
+
('E', 'in'): -3.14e+100,
|
82 |
+
('E', 'j'): -3.14e+100,
|
83 |
+
('E', 'jn'): -3.14e+100,
|
84 |
+
('E', 'k'): -3.14e+100,
|
85 |
+
('E', 'l'): -3.14e+100,
|
86 |
+
('E', 'ln'): -3.14e+100,
|
87 |
+
('E', 'm'): -3.14e+100,
|
88 |
+
('E', 'mg'): -3.14e+100,
|
89 |
+
('E', 'mq'): -3.14e+100,
|
90 |
+
('E', 'n'): -3.14e+100,
|
91 |
+
('E', 'ng'): -3.14e+100,
|
92 |
+
('E', 'nr'): -3.14e+100,
|
93 |
+
('E', 'nrfg'): -3.14e+100,
|
94 |
+
('E', 'nrt'): -3.14e+100,
|
95 |
+
('E', 'ns'): -3.14e+100,
|
96 |
+
('E', 'nt'): -3.14e+100,
|
97 |
+
('E', 'nz'): -3.14e+100,
|
98 |
+
('E', 'o'): -3.14e+100,
|
99 |
+
('E', 'p'): -3.14e+100,
|
100 |
+
('E', 'q'): -3.14e+100,
|
101 |
+
('E', 'qe'): -3.14e+100,
|
102 |
+
('E', 'qg'): -3.14e+100,
|
103 |
+
('E', 'r'): -3.14e+100,
|
104 |
+
('E', 'rg'): -3.14e+100,
|
105 |
+
('E', 'rr'): -3.14e+100,
|
106 |
+
('E', 'rz'): -3.14e+100,
|
107 |
+
('E', 's'): -3.14e+100,
|
108 |
+
('E', 't'): -3.14e+100,
|
109 |
+
('E', 'tg'): -3.14e+100,
|
110 |
+
('E', 'u'): -3.14e+100,
|
111 |
+
('E', 'ud'): -3.14e+100,
|
112 |
+
('E', 'ug'): -3.14e+100,
|
113 |
+
('E', 'uj'): -3.14e+100,
|
114 |
+
('E', 'ul'): -3.14e+100,
|
115 |
+
('E', 'uv'): -3.14e+100,
|
116 |
+
('E', 'uz'): -3.14e+100,
|
117 |
+
('E', 'v'): -3.14e+100,
|
118 |
+
('E', 'vd'): -3.14e+100,
|
119 |
+
('E', 'vg'): -3.14e+100,
|
120 |
+
('E', 'vi'): -3.14e+100,
|
121 |
+
('E', 'vn'): -3.14e+100,
|
122 |
+
('E', 'vq'): -3.14e+100,
|
123 |
+
('E', 'w'): -3.14e+100,
|
124 |
+
('E', 'x'): -3.14e+100,
|
125 |
+
('E', 'y'): -3.14e+100,
|
126 |
+
('E', 'yg'): -3.14e+100,
|
127 |
+
('E', 'z'): -3.14e+100,
|
128 |
+
('E', 'zg'): -3.14e+100,
|
129 |
+
('M', 'a'): -3.14e+100,
|
130 |
+
('M', 'ad'): -3.14e+100,
|
131 |
+
('M', 'ag'): -3.14e+100,
|
132 |
+
('M', 'an'): -3.14e+100,
|
133 |
+
('M', 'b'): -3.14e+100,
|
134 |
+
('M', 'bg'): -3.14e+100,
|
135 |
+
('M', 'c'): -3.14e+100,
|
136 |
+
('M', 'd'): -3.14e+100,
|
137 |
+
('M', 'df'): -3.14e+100,
|
138 |
+
('M', 'dg'): -3.14e+100,
|
139 |
+
('M', 'e'): -3.14e+100,
|
140 |
+
('M', 'en'): -3.14e+100,
|
141 |
+
('M', 'f'): -3.14e+100,
|
142 |
+
('M', 'g'): -3.14e+100,
|
143 |
+
('M', 'h'): -3.14e+100,
|
144 |
+
('M', 'i'): -3.14e+100,
|
145 |
+
('M', 'in'): -3.14e+100,
|
146 |
+
('M', 'j'): -3.14e+100,
|
147 |
+
('M', 'jn'): -3.14e+100,
|
148 |
+
('M', 'k'): -3.14e+100,
|
149 |
+
('M', 'l'): -3.14e+100,
|
150 |
+
('M', 'ln'): -3.14e+100,
|
151 |
+
('M', 'm'): -3.14e+100,
|
152 |
+
('M', 'mg'): -3.14e+100,
|
153 |
+
('M', 'mq'): -3.14e+100,
|
154 |
+
('M', 'n'): -3.14e+100,
|
155 |
+
('M', 'ng'): -3.14e+100,
|
156 |
+
('M', 'nr'): -3.14e+100,
|
157 |
+
('M', 'nrfg'): -3.14e+100,
|
158 |
+
('M', 'nrt'): -3.14e+100,
|
159 |
+
('M', 'ns'): -3.14e+100,
|
160 |
+
('M', 'nt'): -3.14e+100,
|
161 |
+
('M', 'nz'): -3.14e+100,
|
162 |
+
('M', 'o'): -3.14e+100,
|
163 |
+
('M', 'p'): -3.14e+100,
|
164 |
+
('M', 'q'): -3.14e+100,
|
165 |
+
('M', 'qe'): -3.14e+100,
|
166 |
+
('M', 'qg'): -3.14e+100,
|
167 |
+
('M', 'r'): -3.14e+100,
|
168 |
+
('M', 'rg'): -3.14e+100,
|
169 |
+
('M', 'rr'): -3.14e+100,
|
170 |
+
('M', 'rz'): -3.14e+100,
|
171 |
+
('M', 's'): -3.14e+100,
|
172 |
+
('M', 't'): -3.14e+100,
|
173 |
+
('M', 'tg'): -3.14e+100,
|
174 |
+
('M', 'u'): -3.14e+100,
|
175 |
+
('M', 'ud'): -3.14e+100,
|
176 |
+
('M', 'ug'): -3.14e+100,
|
177 |
+
('M', 'uj'): -3.14e+100,
|
178 |
+
('M', 'ul'): -3.14e+100,
|
179 |
+
('M', 'uv'): -3.14e+100,
|
180 |
+
('M', 'uz'): -3.14e+100,
|
181 |
+
('M', 'v'): -3.14e+100,
|
182 |
+
('M', 'vd'): -3.14e+100,
|
183 |
+
('M', 'vg'): -3.14e+100,
|
184 |
+
('M', 'vi'): -3.14e+100,
|
185 |
+
('M', 'vn'): -3.14e+100,
|
186 |
+
('M', 'vq'): -3.14e+100,
|
187 |
+
('M', 'w'): -3.14e+100,
|
188 |
+
('M', 'x'): -3.14e+100,
|
189 |
+
('M', 'y'): -3.14e+100,
|
190 |
+
('M', 'yg'): -3.14e+100,
|
191 |
+
('M', 'z'): -3.14e+100,
|
192 |
+
('M', 'zg'): -3.14e+100,
|
193 |
+
('S', 'a'): -3.9025396831295227,
|
194 |
+
('S', 'ad'): -11.048458480182255,
|
195 |
+
('S', 'ag'): -6.954113917960154,
|
196 |
+
('S', 'an'): -12.84021794941031,
|
197 |
+
('S', 'b'): -6.472888763970454,
|
198 |
+
('S', 'bg'): -3.14e+100,
|
199 |
+
('S', 'c'): -4.786966795861212,
|
200 |
+
('S', 'd'): -3.903919764181873,
|
201 |
+
('S', 'df'): -3.14e+100,
|
202 |
+
('S', 'dg'): -8.948397651299683,
|
203 |
+
('S', 'e'): -5.942513006281674,
|
204 |
+
('S', 'en'): -3.14e+100,
|
205 |
+
('S', 'f'): -5.194820249981676,
|
206 |
+
('S', 'g'): -6.507826815331734,
|
207 |
+
('S', 'h'): -8.650563207383884,
|
208 |
+
('S', 'i'): -3.14e+100,
|
209 |
+
('S', 'in'): -3.14e+100,
|
210 |
+
('S', 'j'): -4.911992119644354,
|
211 |
+
('S', 'jn'): -3.14e+100,
|
212 |
+
('S', 'k'): -6.940320595827818,
|
213 |
+
('S', 'l'): -3.14e+100,
|
214 |
+
('S', 'ln'): -3.14e+100,
|
215 |
+
('S', 'm'): -3.269200652116097,
|
216 |
+
('S', 'mg'): -10.825314928868044,
|
217 |
+
('S', 'mq'): -3.14e+100,
|
218 |
+
('S', 'n'): -3.8551483897645107,
|
219 |
+
('S', 'ng'): -4.913434861102905,
|
220 |
+
('S', 'nr'): -4.483663103956885,
|
221 |
+
('S', 'nrfg'): -3.14e+100,
|
222 |
+
('S', 'nrt'): -3.14e+100,
|
223 |
+
('S', 'ns'): -3.14e+100,
|
224 |
+
('S', 'nt'): -12.147070768850364,
|
225 |
+
('S', 'nz'): -3.14e+100,
|
226 |
+
('S', 'o'): -8.464460927750023,
|
227 |
+
('S', 'p'): -2.9868401813596317,
|
228 |
+
('S', 'q'): -4.888658618255058,
|
229 |
+
('S', 'qe'): -3.14e+100,
|
230 |
+
('S', 'qg'): -3.14e+100,
|
231 |
+
('S', 'r'): -2.7635336784127853,
|
232 |
+
('S', 'rg'): -10.275268591948773,
|
233 |
+
('S', 'rr'): -3.14e+100,
|
234 |
+
('S', 'rz'): -3.14e+100,
|
235 |
+
('S', 's'): -3.14e+100,
|
236 |
+
('S', 't'): -3.14e+100,
|
237 |
+
('S', 'tg'): -6.272842531880403,
|
238 |
+
('S', 'u'): -6.940320595827818,
|
239 |
+
('S', 'ud'): -7.728230161053767,
|
240 |
+
('S', 'ug'): -7.5394037026636855,
|
241 |
+
('S', 'uj'): -6.85251045118004,
|
242 |
+
('S', 'ul'): -8.4153713175535,
|
243 |
+
('S', 'uv'): -8.15808672228609,
|
244 |
+
('S', 'uz'): -9.299258625372996,
|
245 |
+
('S', 'v'): -3.053292303412302,
|
246 |
+
('S', 'vd'): -3.14e+100,
|
247 |
+
('S', 'vg'): -5.9430181843676895,
|
248 |
+
('S', 'vi'): -3.14e+100,
|
249 |
+
('S', 'vn'): -11.453923588290419,
|
250 |
+
('S', 'vq'): -3.14e+100,
|
251 |
+
('S', 'w'): -3.14e+100,
|
252 |
+
('S', 'x'): -8.427419656069674,
|
253 |
+
('S', 'y'): -6.1970794699489575,
|
254 |
+
('S', 'yg'): -13.533365129970255,
|
255 |
+
('S', 'z'): -3.14e+100,
|
256 |
+
('S', 'zg'): -3.14e+100}
|
jieba/posseg/prob_trans.p
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/posseg/prob_trans.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
jieba/posseg/viterbi.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import operator
|
3 |
+
MIN_FLOAT = -3.14e100
|
4 |
+
MIN_INF = float("-inf")
|
5 |
+
|
6 |
+
if sys.version_info[0] > 2:
|
7 |
+
xrange = range
|
8 |
+
|
9 |
+
|
10 |
+
def get_top_states(t_state_v, K=4):
|
11 |
+
return sorted(t_state_v, key=t_state_v.__getitem__, reverse=True)[:K]
|
12 |
+
|
13 |
+
|
14 |
+
def viterbi(obs, states, start_p, trans_p, emit_p):
|
15 |
+
V = [{}] # tabular
|
16 |
+
mem_path = [{}]
|
17 |
+
all_states = trans_p.keys()
|
18 |
+
for y in states.get(obs[0], all_states): # init
|
19 |
+
V[0][y] = start_p[y] + emit_p[y].get(obs[0], MIN_FLOAT)
|
20 |
+
mem_path[0][y] = ''
|
21 |
+
for t in xrange(1, len(obs)):
|
22 |
+
V.append({})
|
23 |
+
mem_path.append({})
|
24 |
+
#prev_states = get_top_states(V[t-1])
|
25 |
+
prev_states = [
|
26 |
+
x for x in mem_path[t - 1].keys() if len(trans_p[x]) > 0]
|
27 |
+
|
28 |
+
prev_states_expect_next = set(
|
29 |
+
(y for x in prev_states for y in trans_p[x].keys()))
|
30 |
+
obs_states = set(
|
31 |
+
states.get(obs[t], all_states)) & prev_states_expect_next
|
32 |
+
|
33 |
+
if not obs_states:
|
34 |
+
obs_states = prev_states_expect_next if prev_states_expect_next else all_states
|
35 |
+
|
36 |
+
for y in obs_states:
|
37 |
+
prob, state = max((V[t - 1][y0] + trans_p[y0].get(y, MIN_INF) +
|
38 |
+
emit_p[y].get(obs[t], MIN_FLOAT), y0) for y0 in prev_states)
|
39 |
+
V[t][y] = prob
|
40 |
+
mem_path[t][y] = state
|
41 |
+
|
42 |
+
last = [(V[-1][y], y) for y in mem_path[-1].keys()]
|
43 |
+
# if len(last)==0:
|
44 |
+
# print obs
|
45 |
+
prob, state = max(last)
|
46 |
+
|
47 |
+
route = [None] * len(obs)
|
48 |
+
i = len(obs) - 1
|
49 |
+
while i >= 0:
|
50 |
+
route[i] = state
|
51 |
+
state = mem_path[i][state]
|
52 |
+
i -= 1
|
53 |
+
return (prob, route)
|
models.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"zh_core_web_sm":"Chinese (zh_core_web_sm)",
|
3 |
+
"en_core_web_sm":"English (en_core_web_sm)",
|
4 |
+
"ja_core_news_sm":"Japanese (ja_core_news_sm)"
|
5 |
+
}
|
pages/01_🍊Mandarin.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import Counter
|
2 |
+
from dragonmapper import hanzi, transcriptions
|
3 |
+
import jieba
|
4 |
+
import pandas as pd
|
5 |
+
import plotly.express as px
|
6 |
+
import re
|
7 |
+
import requests
|
8 |
+
import spacy
|
9 |
+
from spacy_streamlit import visualize_ner, visualize_tokens
|
10 |
+
#from spacy.language import Language
|
11 |
+
from spacy.tokens import Doc
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
# Global variables
|
15 |
+
DEFAULT_TEXT = "我如此的過著孤單的生活,我沒有一個可以真正跟他談話的人,一直到六年前,我在撒哈拉沙漠飛機故障的時候。我的發動機裡有些東西壞了。而由於我身邊沒有機械師,也沒有乘客,我準備獨自去嘗試一次困難的修理。這對我是生死問題。我連足夠喝八天的水都沒有。頭一天晚上我在離開有人居住的地方一千英里的沙地上睡覺。我比一位漂流在汪洋大海裡的木筏上面的遇難者更孤單。當天剛破曉的時候,我被一種奇異的小聲音叫醒,你可以想像到,這時我是多麼的驚訝。那聲音說:「請你﹒﹒﹒給我畫一隻綿羊!」「哪!」「給我畫一隻綿羊!」《小王子》"
|
16 |
+
DESCRIPTION = "AI模型輔助語言學習:華語"
|
17 |
+
TOK_SEP = " | "
|
18 |
+
PUNCT_SYM = ["PUNCT", "SYM"]
|
19 |
+
MODEL_NAME = "zh_core_web_sm"
|
20 |
+
|
21 |
+
# External API callers
|
22 |
+
def moedict_caller(word):
|
23 |
+
st.write(f"### {word}")
|
24 |
+
req = requests.get(f"https://www.moedict.tw/uni/{word}.json")
|
25 |
+
try:
|
26 |
+
definitions = req.json().get('heteronyms')[0].get('definitions')
|
27 |
+
df = pd.DataFrame(definitions)
|
28 |
+
df.fillna("---", inplace=True)
|
29 |
+
if 'example' not in df.columns:
|
30 |
+
df['example'] = '---'
|
31 |
+
if 'synonyms' not in df.columns:
|
32 |
+
df['synonyms'] = '---'
|
33 |
+
if 'antonyms' not in df.columns:
|
34 |
+
df['antonyms'] = '---'
|
35 |
+
cols = ['def', 'example', 'synonyms', 'antonyms']
|
36 |
+
df = df[cols]
|
37 |
+
df.rename(columns={
|
38 |
+
'def': '解釋',
|
39 |
+
'example': '例句',
|
40 |
+
'synonyms': '同義詞',
|
41 |
+
'antonyms': '反義詞',
|
42 |
+
}, inplace=True)
|
43 |
+
with st.expander("點擊 + 查看結果"):
|
44 |
+
st.table(df)
|
45 |
+
except:
|
46 |
+
st.write("查無結果")
|
47 |
+
|
48 |
+
# Custom tokenizer class
|
49 |
+
class JiebaTokenizer:
|
50 |
+
def __init__(self, vocab):
|
51 |
+
self.vocab = vocab
|
52 |
+
|
53 |
+
def __call__(self, text):
|
54 |
+
words = jieba.cut(text) # returns a generator
|
55 |
+
tokens = list(words) # convert the genetator to a list
|
56 |
+
spaces = [False] * len(tokens)
|
57 |
+
doc = Doc(self.vocab, words=tokens, spaces=spaces)
|
58 |
+
return doc
|
59 |
+
|
60 |
+
# Utility functions
|
61 |
+
def filter_tokens(doc):
|
62 |
+
clean_tokens = [tok for tok in doc if tok.pos_ not in PUNCT_SYM]
|
63 |
+
clean_tokens = (
|
64 |
+
[tok for tok in clean_tokens if
|
65 |
+
not tok.like_email and
|
66 |
+
not tok.like_num and
|
67 |
+
not tok.like_url and
|
68 |
+
not tok.is_space]
|
69 |
+
)
|
70 |
+
return clean_tokens
|
71 |
+
|
72 |
+
def get_vocab(doc):
|
73 |
+
clean_tokens = filter_tokens(doc)
|
74 |
+
alphanum_pattern = re.compile(r"[a-zA-Z0-9]")
|
75 |
+
clean_tokens_text = [tok.text for tok in clean_tokens if not alphanum_pattern.search(tok.text)]
|
76 |
+
vocab = list(set(clean_tokens_text))
|
77 |
+
return vocab
|
78 |
+
|
79 |
+
def get_counter(doc):
|
80 |
+
clean_tokens = filter_tokens(doc)
|
81 |
+
tokens = [token.text for token in clean_tokens]
|
82 |
+
counter = Counter(tokens)
|
83 |
+
return counter
|
84 |
+
|
85 |
+
def get_freq_fig(doc):
|
86 |
+
counter = get_counter(doc)
|
87 |
+
counter_df = (
|
88 |
+
pd.DataFrame.from_dict(counter, orient='index').
|
89 |
+
reset_index().
|
90 |
+
rename(columns={
|
91 |
+
0: 'count',
|
92 |
+
'index': 'word'
|
93 |
+
}).
|
94 |
+
sort_values(by='count', ascending=False)
|
95 |
+
)
|
96 |
+
fig = px.bar(counter_df, x='word', y='count')
|
97 |
+
return fig
|
98 |
+
|
99 |
+
def get_level_pie(tocfl_result):
|
100 |
+
level = tocfl_result['詞條分級'].value_counts()
|
101 |
+
fig = px.pie(tocfl_result,
|
102 |
+
values=level.values,
|
103 |
+
names=level.index,
|
104 |
+
title='詞彙分級圓餅圖')
|
105 |
+
return fig
|
106 |
+
|
107 |
+
@st.cache
|
108 |
+
def load_tocfl_table(filename="./tocfl_wordlist.csv"):
|
109 |
+
table = pd.read_csv(filename)
|
110 |
+
cols = "詞彙 漢語拼音 注音 任務領域 詞條分級".split()
|
111 |
+
table = table[cols]
|
112 |
+
return table
|
113 |
+
|
114 |
+
# Page setting
|
115 |
+
st.set_page_config(
|
116 |
+
page_icon="🤠",
|
117 |
+
layout="wide",
|
118 |
+
initial_sidebar_state="auto",
|
119 |
+
)
|
120 |
+
st.markdown(f"# {DESCRIPTION}")
|
121 |
+
|
122 |
+
# Load the model
|
123 |
+
nlp = spacy.load(MODEL_NAME)
|
124 |
+
|
125 |
+
# Add pipelines to spaCy
|
126 |
+
# nlp.add_pipe("yake") # keyword extraction
|
127 |
+
# nlp.add_pipe("merge_entities") # Merge entity spans to tokens
|
128 |
+
|
129 |
+
# Select a tokenizer if the Chinese model is chosen
|
130 |
+
selected_tokenizer = st.radio("請選擇斷詞模型", ["jieba-TW", "spaCy"])
|
131 |
+
if selected_tokenizer == "jieba-TW":
|
132 |
+
nlp.tokenizer = JiebaTokenizer(nlp.vocab)
|
133 |
+
|
134 |
+
# Page starts from here
|
135 |
+
st.markdown("## 待分析文本")
|
136 |
+
st.info("請在下面的文字框輸入文本並按下Ctrl + Enter以更新分析結果")
|
137 |
+
text = st.text_area("", DEFAULT_TEXT, height=200)
|
138 |
+
doc = nlp(text)
|
139 |
+
st.markdown("---")
|
140 |
+
|
141 |
+
st.info("���勾選以下至少一項功能")
|
142 |
+
# keywords_extraction = st.sidebar.checkbox("關鍵詞分析", False) # YAKE doesn't work for Chinese texts
|
143 |
+
analyzed_text = st.checkbox("增強文本", True)
|
144 |
+
defs_examples = st.checkbox("單詞解析", True)
|
145 |
+
# morphology = st.sidebar.checkbox("詞形變化", True)
|
146 |
+
freq_count = st.checkbox("詞頻統計", True)
|
147 |
+
ner_viz = st.checkbox("命名實體", True)
|
148 |
+
tok_table = st.checkbox("斷詞特徵", False)
|
149 |
+
|
150 |
+
if analyzed_text:
|
151 |
+
st.markdown("## 增強文本")
|
152 |
+
pronunciation = st.radio("請選擇輔助發音類型", ["漢語拼音", "注音符號", "國際音標"])
|
153 |
+
for idx, sent in enumerate(doc.sents):
|
154 |
+
tokens_text = [tok.text for tok in sent if tok.pos_ not in PUNCT_SYM]
|
155 |
+
pinyins = [hanzi.to_pinyin(word) for word in tokens_text]
|
156 |
+
sounds = pinyins
|
157 |
+
if pronunciation == "注音符號":
|
158 |
+
zhuyins = [transcriptions.pinyin_to_zhuyin(word) for word in pinyins]
|
159 |
+
sounds = zhuyins
|
160 |
+
elif pronunciation == "國際音標":
|
161 |
+
ipas = [transcriptions.pinyin_to_ipa(word) for word in pinyins]
|
162 |
+
sounds = ipas
|
163 |
+
|
164 |
+
display = []
|
165 |
+
for text, sound in zip(tokens_text, sounds):
|
166 |
+
res = f"{text} [{sound}]"
|
167 |
+
display.append(res)
|
168 |
+
if display:
|
169 |
+
display_text = TOK_SEP.join(display)
|
170 |
+
st.write(f"{idx+1} >>> {display_text}")
|
171 |
+
else:
|
172 |
+
st.write(f"{idx+1} >>> EMPTY LINE")
|
173 |
+
|
174 |
+
if defs_examples:
|
175 |
+
st.markdown("## 單詞解析")
|
176 |
+
vocab = get_vocab(doc)
|
177 |
+
if vocab:
|
178 |
+
tocfl_table = load_tocfl_table()
|
179 |
+
filt = tocfl_table['詞彙'].isin(vocab)
|
180 |
+
tocfl_res = tocfl_table[filt]
|
181 |
+
st.markdown("### 華語詞彙分級")
|
182 |
+
fig = get_level_pie(tocfl_res)
|
183 |
+
st.plotly_chart(fig, use_container_width=True)
|
184 |
+
|
185 |
+
with st.expander("點擊 + 查看結果"):
|
186 |
+
st.table(tocfl_res)
|
187 |
+
st.markdown("---")
|
188 |
+
st.markdown("### 單詞解釋與例句")
|
189 |
+
selected_words = st.multiselect("請選擇要查詢的單詞: ", vocab, vocab[-1])
|
190 |
+
for w in selected_words:
|
191 |
+
moedict_caller(w)
|
192 |
+
|
193 |
+
if freq_count:
|
194 |
+
st.markdown("## 詞頻統計")
|
195 |
+
counter = get_counter(doc)
|
196 |
+
topK = st.slider('請選擇前K個高頻詞', 1, len(counter), 5)
|
197 |
+
most_common = counter.most_common(topK)
|
198 |
+
st.write(most_common)
|
199 |
+
st.markdown("---")
|
200 |
+
|
201 |
+
fig = get_freq_fig(doc)
|
202 |
+
st.plotly_chart(fig, use_container_width=True)
|
203 |
+
|
204 |
+
if ner_viz:
|
205 |
+
ner_labels = nlp.get_pipe("ner").labels
|
206 |
+
visualize_ner(doc, labels=ner_labels, show_table=False, title="命名實體")
|
207 |
+
|
208 |
+
if tok_table:
|
209 |
+
visualize_tokens(doc, attrs=["text", "pos_", "tag_", "dep_", "head"], title="斷詞特徵")
|
pages/02_🍣Japanese.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from jisho_api.word import Word
|
2 |
+
from jisho_api.sentence import Sentence
|
3 |
+
import pandas as pd
|
4 |
+
import re
|
5 |
+
import requests
|
6 |
+
import spacy
|
7 |
+
from spacy_streamlit import visualize_ner, visualize_tokens
|
8 |
+
#from spacy.language import Language
|
9 |
+
from spacy.tokens import Doc
|
10 |
+
import spacy_ke
|
11 |
+
import streamlit as st
|
12 |
+
|
13 |
+
# Global variables
|
14 |
+
DEFAULT_TEXT = """それまで、ぼくはずっとひとりぼっちだった。だれともうちとけられないまま、6年まえ、ちょっとおかしくなって、サハラさばくに下りた。ぼくのエンジンのなかで、なにかがこわれていた。ぼくには、みてくれるひとも、おきゃくさんもいなかったから、なおすのはむずかしいけど、ぜんぶひとりでなんとかやってみることにした。それでぼくのいのちがきまってしまう。のみ水は、たった7日ぶんしかなかった。
|
15 |
+
1日めの夜、ぼくはすなの上でねむった。ひとのすむところは、はるかかなただった。海のどまんなか、いかだでさまよっているひとよりも、もっとひとりぼっち。だから、ぼくがびっくりしたのも、みんなわかってくれるとおもう。じつは、あさ日がのぼるころ、ぼくは、ふしぎなかわいいこえでおこされたんだ。
|
16 |
+
「ごめんください……ヒツジの絵をかいて!」
|
17 |
+
「えっ?」
|
18 |
+
「ぼくにヒツジの絵をかいて……」
|
19 |
+
『星の王子さま』"""
|
20 |
+
DESCRIPTION = "AI模型輔助語言學習:日語"
|
21 |
+
TOK_SEP = " | "
|
22 |
+
MODEL_NAME = "ja_ginza"
|
23 |
+
|
24 |
+
# External API callers
|
25 |
+
def parse_jisho_senses(word):
|
26 |
+
res = Word.request(word)
|
27 |
+
response = res.dict()
|
28 |
+
if response["meta"]["status"] == 200:
|
29 |
+
data = response["data"]
|
30 |
+
commons = [d for d in data if d["is_common"]]
|
31 |
+
if commons:
|
32 |
+
common = commons[0] # Only get the first entry that is common
|
33 |
+
senses = common["senses"]
|
34 |
+
if len(senses) > 3:
|
35 |
+
senses = senses[:3]
|
36 |
+
with st.container():
|
37 |
+
for idx, sense in enumerate(senses):
|
38 |
+
eng_def = "; ".join(sense["english_definitions"])
|
39 |
+
pos = "/".join(sense["parts_of_speech"])
|
40 |
+
st.write(f"Sense {idx+1}: {eng_def} ({pos})")
|
41 |
+
else:
|
42 |
+
st.info("Found no common words on Jisho!")
|
43 |
+
else:
|
44 |
+
st.error("Can't get response from Jisho!")
|
45 |
+
|
46 |
+
|
47 |
+
def parse_jisho_sentences(word):
|
48 |
+
res = Sentence.request(word)
|
49 |
+
try:
|
50 |
+
response = res.dict()
|
51 |
+
data = response["data"]
|
52 |
+
if len(data) > 3:
|
53 |
+
sents = data[:3]
|
54 |
+
else:
|
55 |
+
sents = data
|
56 |
+
with st.container():
|
57 |
+
for idx, sent in enumerate(sents):
|
58 |
+
eng = sent["en_translation"]
|
59 |
+
jap = sent["japanese"]
|
60 |
+
st.write(f"Sentence {idx+1}: {jap}")
|
61 |
+
st.write(f"({eng})")
|
62 |
+
except:
|
63 |
+
st.info("Found no results on Jisho!")
|
64 |
+
|
65 |
+
# Utility functions
|
66 |
+
def create_jap_df(tokens):
|
67 |
+
seen_texts = []
|
68 |
+
filtered_tokens = []
|
69 |
+
for tok in tokens:
|
70 |
+
if tok.text not in seen_texts:
|
71 |
+
filtered_tokens.append(tok)
|
72 |
+
|
73 |
+
df = pd.DataFrame(
|
74 |
+
{
|
75 |
+
"單詞": [tok.text for tok in filtered_tokens],
|
76 |
+
"發音": ["/".join(tok.morph.get("Reading")) for tok in filtered_tokens],
|
77 |
+
"詞形變化": ["/".join(tok.morph.get("Inflection")) for tok in filtered_tokens],
|
78 |
+
"原形": [tok.lemma_ for tok in filtered_tokens],
|
79 |
+
#"正規形": [tok.norm_ for tok in verbs],
|
80 |
+
}
|
81 |
+
)
|
82 |
+
st.dataframe(df)
|
83 |
+
csv = df.to_csv().encode('utf-8')
|
84 |
+
st.download_button(
|
85 |
+
label="下載表格",
|
86 |
+
data=csv,
|
87 |
+
file_name='jap_forms.csv',
|
88 |
+
)
|
89 |
+
|
90 |
+
def filter_tokens(doc):
|
91 |
+
clean_tokens = [tok for tok in doc if tok.pos_ not in ["PUNCT", "SYM"]]
|
92 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.like_email]
|
93 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.like_url]
|
94 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.like_num]
|
95 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.is_punct]
|
96 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.is_space]
|
97 |
+
return clean_tokens
|
98 |
+
|
99 |
+
def create_kw_section(doc):
|
100 |
+
st.markdown("## 關鍵詞分析")
|
101 |
+
kw_num = st.slider("請選擇關鍵詞數量", 1, 10, 3)
|
102 |
+
kws2scores = {keyword: score for keyword, score in doc._.extract_keywords(n=kw_num)}
|
103 |
+
kws2scores = sorted(kws2scores.items(), key=lambda x: x[1], reverse=True)
|
104 |
+
count = 1
|
105 |
+
for keyword, score in kws2scores:
|
106 |
+
rounded_score = round(score, 3)
|
107 |
+
st.write(f"{count} >>> {keyword} ({rounded_score})")
|
108 |
+
count += 1
|
109 |
+
|
110 |
+
# Page setting
|
111 |
+
st.set_page_config(
|
112 |
+
page_icon="🤠",
|
113 |
+
layout="wide",
|
114 |
+
initial_sidebar_state="auto",
|
115 |
+
)
|
116 |
+
st.markdown(f"# {DESCRIPTION}")
|
117 |
+
|
118 |
+
# Load the model
|
119 |
+
nlp = spacy.load(MODEL_NAME)
|
120 |
+
|
121 |
+
# Add pipelines to spaCy
|
122 |
+
nlp.add_pipe("yake") # keyword extraction
|
123 |
+
# nlp.add_pipe("merge_entities") # Merge entity spans to tokens
|
124 |
+
|
125 |
+
# Page starts from here
|
126 |
+
st.markdown("## 待分析文本")
|
127 |
+
st.info("請在下面的文字框輸入文本並按下Ctrl + Enter以更新分析結果")
|
128 |
+
text = st.text_area("", DEFAULT_TEXT, height=200)
|
129 |
+
doc = nlp(text)
|
130 |
+
st.markdown("---")
|
131 |
+
|
132 |
+
st.info("請勾選以下至少一項功能")
|
133 |
+
keywords_extraction = st.checkbox("關鍵詞分析", False)
|
134 |
+
analyzed_text = st.checkbox("增強文本", True)
|
135 |
+
defs_examples = st.checkbox("單詞解析", True)
|
136 |
+
morphology = st.checkbox("詞形變化", False)
|
137 |
+
ner_viz = st.checkbox("命名實體", True)
|
138 |
+
tok_table = st.checkbox("斷詞特徵", False)
|
139 |
+
|
140 |
+
if keywords_extraction:
|
141 |
+
create_kw_section(doc)
|
142 |
+
|
143 |
+
if analyzed_text:
|
144 |
+
st.markdown("## 分析後文本")
|
145 |
+
for idx, sent in enumerate(doc.sents):
|
146 |
+
clean_tokens = [tok for tok in sent if tok.pos_ not in ["PUNCT", "SYM"]]
|
147 |
+
tokens_text = [tok.text for tok in clean_tokens]
|
148 |
+
readings = ["/".join(tok.morph.get("Reading")) for tok in clean_tokens]
|
149 |
+
display = [f"{text} [{reading}]" for text, reading in zip(tokens_text, readings)]
|
150 |
+
if display:
|
151 |
+
display_text = TOK_SEP.join(display)
|
152 |
+
st.write(f"{idx+1} >>> {display_text}")
|
153 |
+
else:
|
154 |
+
st.write(f"{idx+1} >>> EMPTY LINE")
|
155 |
+
|
156 |
+
if defs_examples:
|
157 |
+
st.markdown("## 單詞解釋與例句")
|
158 |
+
clean_tokens = filter_tokens(doc)
|
159 |
+
alphanum_pattern = re.compile(r"[a-zA-Z0-9]")
|
160 |
+
clean_lemmas = [tok.lemma_ for tok in clean_tokens if not alphanum_pattern.search(tok.lemma_)]
|
161 |
+
vocab = list(set(clean_lemmas))
|
162 |
+
if vocab:
|
163 |
+
selected_words = st.multiselect("請選擇要查詢的單詞: ", vocab, vocab[0:3])
|
164 |
+
for w in selected_words:
|
165 |
+
st.write(f"### {w}")
|
166 |
+
with st.expander("點擊 + 檢視結果"):
|
167 |
+
parse_jisho_senses(w)
|
168 |
+
parse_jisho_sentences(w)
|
169 |
+
|
170 |
+
if morphology:
|
171 |
+
st.markdown("## 詞形變化")
|
172 |
+
# Collect inflected forms
|
173 |
+
inflected_forms = [tok for tok in doc if tok.tag_.startswith("動詞") or tok.tag_.startswith("形")]
|
174 |
+
if inflected_forms:
|
175 |
+
create_jap_df(inflected_forms)
|
176 |
+
|
177 |
+
if ner_viz:
|
178 |
+
ner_labels = nlp.get_pipe("ner").labels
|
179 |
+
visualize_ner(doc, labels=ner_labels, show_table=False, title="命名實體")
|
180 |
+
|
181 |
+
if tok_table:
|
182 |
+
visualize_tokens(doc, attrs=["text", "pos_", "tag_", "dep_", "head"], title="斷詞特徵")
|
183 |
+
|
pages/03_🍔English.py
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import re
|
3 |
+
import requests
|
4 |
+
import spacy
|
5 |
+
from spacy_streamlit import visualize_ner, visualize_tokens
|
6 |
+
#from spacy.language import Language
|
7 |
+
from spacy.tokens import Doc
|
8 |
+
import spacy_ke
|
9 |
+
import streamlit as st
|
10 |
+
|
11 |
+
# Global variables
|
12 |
+
DEFAULT_TEXT = """So I lived my life alone, without anyone that I could really talk to, until I had an accident with my plane in the Desert of Sahara, six years ago. Something was broken in my engine. And as I had with me neither a mechanic nor any passengers, I set myself to attempt the difficult repairs all alone. It was a question of life or death for me: I had scarcely enough drinking water to last a week. The first night, then, I went to sleep on the sand, a thousand miles from any human habitation. I was more isolated than a shipwrecked sailor on a raft in the middle of the ocean. Thus you can imagine my amazement, at sunrise, when I was awakened by an odd little voice. It said:
|
13 |
+
|
14 |
+
"If you please−− draw me a sheep!"
|
15 |
+
|
16 |
+
"What!"
|
17 |
+
|
18 |
+
"Draw me a sheep!"
|
19 |
+
|
20 |
+
The Little Prince
|
21 |
+
"""
|
22 |
+
DESCRIPTION = "AI模型輔助語言學習:英語"
|
23 |
+
TOK_SEP = " | "
|
24 |
+
MODEL_NAME = "en_core_web_sm"
|
25 |
+
API_LOOKUP = {}
|
26 |
+
MAX_SYM_NUM = 5
|
27 |
+
|
28 |
+
# External API caller
|
29 |
+
def free_dict_caller(word):
|
30 |
+
req = requests.get(f"https://api.dictionaryapi.dev/api/v2/entries/en/{word}")
|
31 |
+
try:
|
32 |
+
result = req.json()[0]
|
33 |
+
if word not in API_LOOKUP:
|
34 |
+
API_LOOKUP[word] = result
|
35 |
+
except:
|
36 |
+
pass
|
37 |
+
|
38 |
+
def show_definitions_and_examples(word, pos):
|
39 |
+
if word not in API_LOOKUP:
|
40 |
+
free_dict_caller(word)
|
41 |
+
|
42 |
+
result = API_LOOKUP.get(word)
|
43 |
+
if result:
|
44 |
+
meanings = result.get('meanings')
|
45 |
+
if meanings:
|
46 |
+
definitions = []
|
47 |
+
for meaning in meanings:
|
48 |
+
if meaning['partOfSpeech'] == pos.lower():
|
49 |
+
definitions = meaning.get('definitions')
|
50 |
+
|
51 |
+
if len(definitions) > 3:
|
52 |
+
definitions = definitions[:3]
|
53 |
+
|
54 |
+
for definition in definitions:
|
55 |
+
df = definition.get("definition")
|
56 |
+
ex = definition.get("example")
|
57 |
+
st.markdown(f" - {df}")
|
58 |
+
st.markdown(f" Example: *{ex}*")
|
59 |
+
st.markdown("---")
|
60 |
+
|
61 |
+
else:
|
62 |
+
st.info("Found no matching result on Free Dictionary!")
|
63 |
+
|
64 |
+
def get_synonyms(word, pos):
|
65 |
+
if word not in API_LOOKUP:
|
66 |
+
free_dict_caller(word)
|
67 |
+
|
68 |
+
result = API_LOOKUP.get(word)
|
69 |
+
if result:
|
70 |
+
meanings = result.get('meanings')
|
71 |
+
if meanings:
|
72 |
+
synonyms = []
|
73 |
+
for meaning in meanings:
|
74 |
+
if meaning['partOfSpeech'] == pos.lower():
|
75 |
+
synonyms = meaning.get('synonyms')
|
76 |
+
return synonyms
|
77 |
+
|
78 |
+
# Utility functions
|
79 |
+
def create_eng_df(tokens):
|
80 |
+
seen_texts = []
|
81 |
+
filtered_tokens = []
|
82 |
+
for tok in tokens:
|
83 |
+
if tok.lemma_ not in seen_texts:
|
84 |
+
filtered_tokens.append(tok)
|
85 |
+
|
86 |
+
df = pd.DataFrame(
|
87 |
+
{
|
88 |
+
"單詞": [tok.text.lower() for tok in filtered_tokens],
|
89 |
+
"詞類": [tok.pos_ for tok in filtered_tokens],
|
90 |
+
"原形": [tok.lemma_ for tok in filtered_tokens],
|
91 |
+
}
|
92 |
+
)
|
93 |
+
st.dataframe(df)
|
94 |
+
csv = df.to_csv().encode('utf-8')
|
95 |
+
st.download_button(
|
96 |
+
label="下載表格",
|
97 |
+
data=csv,
|
98 |
+
file_name='eng_forms.csv',
|
99 |
+
)
|
100 |
+
|
101 |
+
def filter_tokens(doc):
|
102 |
+
clean_tokens = [tok for tok in doc if tok.pos_ not in ["PUNCT", "SYM"]]
|
103 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.like_email]
|
104 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.like_url]
|
105 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.like_num]
|
106 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.is_punct]
|
107 |
+
clean_tokens = [tok for tok in clean_tokens if not tok.is_space]
|
108 |
+
return clean_tokens
|
109 |
+
|
110 |
+
def create_kw_section(doc):
|
111 |
+
st.markdown("## 關鍵詞分析")
|
112 |
+
kw_num = st.slider("請選擇關鍵詞數量", 1, 10, 3)
|
113 |
+
kws2scores = {keyword: score for keyword, score in doc._.extract_keywords(n=kw_num)}
|
114 |
+
kws2scores = sorted(kws2scores.items(), key=lambda x: x[1], reverse=True)
|
115 |
+
count = 1
|
116 |
+
for keyword, score in kws2scores:
|
117 |
+
rounded_score = round(score, 3)
|
118 |
+
st.write(f"{count} >>> {keyword} ({rounded_score})")
|
119 |
+
count += 1
|
120 |
+
|
121 |
+
# Page setting
|
122 |
+
st.set_page_config(
|
123 |
+
page_icon="🤠",
|
124 |
+
layout="wide",
|
125 |
+
initial_sidebar_state="auto",
|
126 |
+
)
|
127 |
+
st.markdown(f"# {DESCRIPTION}")
|
128 |
+
|
129 |
+
# Load the language model
|
130 |
+
nlp = spacy.load(MODEL_NAME)
|
131 |
+
|
132 |
+
# Add pipelines to spaCy
|
133 |
+
nlp.add_pipe("yake") # keyword extraction
|
134 |
+
# nlp.add_pipe("merge_entities") # Merge entity spans to tokens
|
135 |
+
|
136 |
+
# Page starts from here
|
137 |
+
st.markdown("## 待分析文本")
|
138 |
+
st.info("請在下面的文字框輸入文本並按下Ctrl + Enter以更新分析結果")
|
139 |
+
text = st.text_area("", DEFAULT_TEXT, height=200)
|
140 |
+
doc = nlp(text)
|
141 |
+
st.markdown("---")
|
142 |
+
|
143 |
+
st.info("請勾選以下至少一項功能")
|
144 |
+
keywords_extraction = st.checkbox("關鍵詞分析", False)
|
145 |
+
analyzed_text = st.checkbox("增強文本", True)
|
146 |
+
defs_examples = st.checkbox("單詞解析", True)
|
147 |
+
morphology = st.checkbox("詞形變化", False)
|
148 |
+
ner_viz = st.checkbox("命名實體", True)
|
149 |
+
tok_table = st.checkbox("斷詞特徵", False)
|
150 |
+
|
151 |
+
if keywords_extraction:
|
152 |
+
create_kw_section(doc)
|
153 |
+
|
154 |
+
if analyzed_text:
|
155 |
+
st.markdown("## 分析後文本")
|
156 |
+
for idx, sent in enumerate(doc.sents):
|
157 |
+
enriched_sentence = []
|
158 |
+
for tok in sent:
|
159 |
+
if tok.pos_ != "VERB":
|
160 |
+
enriched_sentence.append(tok.text)
|
161 |
+
else:
|
162 |
+
synonyms = get_synonyms(tok.text, tok.pos_)
|
163 |
+
if synonyms:
|
164 |
+
if len(synonyms) > MAX_SYM_NUM:
|
165 |
+
synonyms = synonyms[:MAX_SYM_NUM]
|
166 |
+
added_verbs = " | ".join(synonyms)
|
167 |
+
enriched_tok = f"{tok.text} (cf. {added_verbs})"
|
168 |
+
enriched_sentence.append(enriched_tok)
|
169 |
+
else:
|
170 |
+
enriched_sentence.append(tok.text)
|
171 |
+
|
172 |
+
display_text = " ".join(enriched_sentence)
|
173 |
+
st.write(f"{idx+1} >>> {display_text}")
|
174 |
+
|
175 |
+
if defs_examples:
|
176 |
+
st.markdown("## 單詞解釋與例句")
|
177 |
+
clean_tokens = filter_tokens(doc)
|
178 |
+
num_pattern = re.compile(r"[0-9]")
|
179 |
+
clean_tokens = [tok for tok in clean_tokens if not num_pattern.search(tok.lemma_)]
|
180 |
+
selected_pos = ["VERB", "NOUN", "ADJ", "ADV"]
|
181 |
+
clean_tokens = [tok for tok in clean_tokens if tok.pos_ in selected_pos]
|
182 |
+
tokens_lemma_pos = [tok.lemma_ + " | " + tok.pos_ for tok in clean_tokens]
|
183 |
+
vocab = list(set(tokens_lemma_pos))
|
184 |
+
if vocab:
|
185 |
+
selected_words = st.multiselect("請選擇要查詢的單詞: ", vocab, vocab[0:3])
|
186 |
+
for w in selected_words:
|
187 |
+
word_pos = w.split("|")
|
188 |
+
word = word_pos[0].strip()
|
189 |
+
pos = word_pos[1].strip()
|
190 |
+
st.write(f"### {w}")
|
191 |
+
with st.expander("點擊 + 檢視結果"):
|
192 |
+
show_definitions_and_examples(word, pos)
|
193 |
+
|
194 |
+
if morphology:
|
195 |
+
st.markdown("## 詞形變化")
|
196 |
+
# Collect inflected forms
|
197 |
+
inflected_forms = [tok for tok in doc if tok.text.lower() != tok.lemma_.lower()]
|
198 |
+
if inflected_forms:
|
199 |
+
create_eng_df(inflected_forms)
|
200 |
+
|
201 |
+
if ner_viz:
|
202 |
+
ner_labels = nlp.get_pipe("ner").labels
|
203 |
+
visualize_ner(doc, labels=ner_labels, show_table=False, title="命名實體")
|
204 |
+
|
205 |
+
if tok_table:
|
206 |
+
visualize_tokens(doc, attrs=["text", "pos_", "tag_", "dep_", "head"], title="斷詞特徵")
|
requirements.txt
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ja_ginza is a Japanese model with a lemmatizer and a morphologizer more fine-grained than the default one in spaCy
|
2 |
+
ginza
|
3 |
+
ja_ginza
|
4 |
+
|
5 |
+
# ja_ginza depends on spacy>=3.2.0,<3.3.0
|
6 |
+
spacy>=3.2.0,<3.3.0
|
7 |
+
spacy-streamlit>=1.0.0rc1,<1.1.0
|
8 |
+
spacy-wordnet
|
9 |
+
|
10 |
+
# spacy-wordnet depends on nltk
|
11 |
+
nltk
|
12 |
+
|
13 |
+
# sapCy models
|
14 |
+
https://github.com/explosion/spacy-models/releases/download/zh_core_web_sm-3.2.0/zh_core_web_sm-3.2.0.tar.gz#egg=zh_core_web_sm
|
15 |
+
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.2.0/en_core_web_sm-3.2.0.tar.gz#egg=en_core_web_sm
|
16 |
+
|
17 |
+
# conversion between hanzi and transcriptions
|
18 |
+
dragonmapper
|
19 |
+
|
20 |
+
# Jisho online Japanese dictionary
|
21 |
+
jisho_api
|
22 |
+
|
23 |
+
# YAKE keyword extraction
|
24 |
+
spacy-ke
|
25 |
+
|
26 |
+
# interactive plotting
|
27 |
+
plotly
|
tocfl_wordlist.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
update_data.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A little helper scripts to generate the requirements.txt and models.json with
|
2 |
+
the latest supported model versions based on the compatibility.json."""
|
3 |
+
from spacy.about import __compatibility__ as COMPAT_URL
|
4 |
+
from spacy.util import get_lang_class, is_compatible_version
|
5 |
+
from pathlib import Path
|
6 |
+
import requests
|
7 |
+
import typer
|
8 |
+
import srsly
|
9 |
+
|
10 |
+
|
11 |
+
URL_TEMPLATE = "https://github.com/explosion/spacy-models/releases/download/{name}-{version}/{name}-{version}.tar.gz#egg={name}=={version}"
|
12 |
+
|
13 |
+
|
14 |
+
def main(
|
15 |
+
# fmt: off
|
16 |
+
spacy_version: str = typer.Argument(">=3.0.0,<3.1.0", help="The spaCy version range"),
|
17 |
+
spacy_streamlit_version: str = typer.Argument(">=1.0.0rc1,<1.1.0", help="The version range of spacy-streamlit"),
|
18 |
+
req_path: Path = typer.Option(Path(__file__).parent / "requirements.txt", "--requirements-path", "-rp", help="Path to requirements.txt"),
|
19 |
+
desc_path: Path = typer.Option(Path(__file__).parent / "models.json", "--models-json-path", "-mp", help="Path to models.json with model details for dropdown"),
|
20 |
+
package: str = typer.Option("spacy", "--package", "-p", help="The parent package (spacy, spacy-nightly, etc.)"),
|
21 |
+
exclude: str = typer.Option("en_vectors_web_lg", "--exclude", "-e", help="Comma-separated model names to exclude"),
|
22 |
+
# fmt: on
|
23 |
+
):
|
24 |
+
exclude = [name.strip() for name in exclude.split(",")]
|
25 |
+
r = requests.get(COMPAT_URL)
|
26 |
+
r.raise_for_status()
|
27 |
+
compat = r.json()["spacy"]
|
28 |
+
data = None
|
29 |
+
for version_option in compat:
|
30 |
+
if is_compatible_version(version_option, spacy_version):
|
31 |
+
data = compat[version_option]
|
32 |
+
break
|
33 |
+
if data is None:
|
34 |
+
raise ValueError(f"No compatible models found for {spacy_version}")
|
35 |
+
reqs = [
|
36 |
+
f"# Auto-generated by {Path(__file__).name}",
|
37 |
+
f"{package}{spacy_version}",
|
38 |
+
f"spacy-streamlit{spacy_streamlit_version}",
|
39 |
+
]
|
40 |
+
models = {}
|
41 |
+
for model_name, model_versions in data.items():
|
42 |
+
if model_name not in exclude and model_versions:
|
43 |
+
url = URL_TEMPLATE.format(name=model_name, version=model_versions[0])
|
44 |
+
# We do a quick check if the URL exists
|
45 |
+
r = requests.get(url, headers={"Range": "bytes=0"})
|
46 |
+
if r.status_code == 404:
|
47 |
+
print(f"Invalid package URL (skipping): {url}")
|
48 |
+
continue
|
49 |
+
reqs.append(url)
|
50 |
+
lang = model_name.split("_", 1)[0]
|
51 |
+
lang_name = get_lang_class(lang).__name__
|
52 |
+
models[model_name] = f"{lang_name} ({model_name})"
|
53 |
+
# Sort by human-readable language name, then by model size
|
54 |
+
sort_key = lambda x: f"{x[1].split(' ')[0]}_{['sm', 'md', 'lg', 'trf'].index(x[0].split('_')[-1])}"
|
55 |
+
models = {name: desc for name, desc in sorted(models.items(), key=sort_key)}
|
56 |
+
with Path(req_path).open("w", encoding="utf8") as f:
|
57 |
+
f.write("\n".join(reqs))
|
58 |
+
srsly.write_json(desc_path, models)
|
59 |
+
print(f"Generated requirements.txt and models.json for {len(reqs) - 1} models")
|
60 |
+
|
61 |
+
|
62 |
+
if __name__ == "__main__":
|
63 |
+
typer.run(main)
|