Upload 2 files
Browse files- app.py +27 -0
- requirements.txt +2 -0
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from ultralytics import YOLOv10
|
3 |
+
import supervision as sv
|
4 |
+
|
5 |
+
MODEL_PATH = 'yolov10n.pt'
|
6 |
+
model = YOLOv10(MODEL_PATH)
|
7 |
+
box_annotator = sv.BoxAnnotator()
|
8 |
+
|
9 |
+
def detect(image):
|
10 |
+
results = model(source=image, conf=0.25, verbose=False)[0]
|
11 |
+
detections = sv.Detections.from_ultralytics(results)
|
12 |
+
|
13 |
+
labels = [
|
14 |
+
f"{model.model.names[class_id]} {confidence:.2f}"
|
15 |
+
for class_id, confidence in zip(detections.class_id, detections.confidence)
|
16 |
+
]
|
17 |
+
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
|
18 |
+
|
19 |
+
return annotated_image
|
20 |
+
|
21 |
+
gr.Interface(
|
22 |
+
fn=detect,
|
23 |
+
inputs=gr.inputs.Image(type="numpy"),
|
24 |
+
outputs=gr.outputs.Image(type="numpy", label="Annotated Image"),
|
25 |
+
title='YOLOv10 Object Detection',
|
26 |
+
description='Detect objects in images using the YOLOv10 model'
|
27 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
supervision
|
2 |
+
git+https://github.com/THU-MIG/yolov10.git
|