Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from abc import ABC, abstractmethod | |
import torch | |
import torch.nn as nn | |
import transformers | |
from llava.model.utils import get_w | |
from .multimodal_encoder.builder import build_vision_tower | |
from llava.constants import ( | |
GROUND_TOKEN, | |
IGNORE_INDEX, | |
IMAGE_TOKEN_INDEX, | |
DEFAULT_IMAGE_PATCH_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
DEFAULT_IM_END_TOKEN, | |
PROFILE_RUNTIME, | |
) | |
import time | |
from transformers.utils import logging | |
logger = logging.get_logger("transformers") | |
class LlavaMetaModel: | |
def __init__(self, config): | |
super(LlavaMetaModel, self).__init__(config) | |
if hasattr(config, "mm_vision_tower"): | |
self.vision_tower = build_vision_tower(config, delay_load=True) | |
if self.vision_tower is not None: | |
self.mm_projector = nn.Linear( | |
self.vision_tower.hidden_size, config.hidden_size | |
) # placeholder, this will be re-initialized later in initialize_vision_modules() | |
def get_vision_tower(self): | |
vision_tower = getattr(self, "vision_tower", None) | |
if type(vision_tower) is list: | |
vision_tower = vision_tower[0] | |
return vision_tower | |
def initialize_vision_modules(self, model_args, fsdp=None): | |
vision_tower = model_args.vision_tower | |
mm_vision_select_layer = model_args.mm_vision_select_layer | |
mm_vision_select_feature = model_args.mm_vision_select_feature | |
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter | |
pretrain_vision_tower = model_args.pretrain_vision_tower | |
self.config.mm_vision_tower = vision_tower | |
if hasattr(self, "vision_tower"): | |
del self.vision_tower | |
torch.cuda.empty_cache() | |
vision_tower = build_vision_tower(model_args) | |
if vision_tower is None: | |
return | |
if fsdp is not None and len(fsdp) > 0: | |
self.vision_tower = [vision_tower] | |
else: | |
self.vision_tower = vision_tower | |
# add these model args to HF config so that they can be saved (used for loading checkpoint) | |
self.config.use_mm_proj = True | |
self.config.mm_hidden_size = vision_tower.hidden_size | |
self.config.mm_vision_select_layer = mm_vision_select_layer | |
self.config.mm_vision_select_feature = mm_vision_select_feature | |
self.config.num_points = model_args.num_points | |
self.config.feature_dim = model_args.feature_dim | |
self.config.num_latents = model_args.num_latents | |
self.config.d_latents = model_args.d_latents | |
self.config.num_cross_attention_heads = model_args.num_cross_attention_heads | |
self.config.position_encoding_type = model_args.position_encoding_type | |
if hasattr(self, "mm_projector"): | |
del self.mm_projector | |
torch.cuda.empty_cache() | |
self.mm_projector = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size) | |
if pretrain_mm_mlp_adapter is not None: | |
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu") | |
self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector")) | |
torch.cuda.empty_cache() | |
class LlavaMetaForCausalLM(ABC): | |
def get_model(self): | |
pass | |
def get_vision_tower(self): | |
return self.get_model().get_vision_tower() | |
def encode_images(self, images): | |
vision_features_before_mm_projection = self.get_model().get_vision_tower()( | |
images | |
) # for minkowski, the output of this step will be float32 | |
vision_features_before_mm_projection = vision_features_before_mm_projection.to( | |
dtype=self.dtype | |
) # convert back to the dtype of the LLM (bfloat16 in most cases), no-op if the dtype is already the same | |
vision_features = self.get_model().mm_projector( | |
vision_features_before_mm_projection | |
) # vision_features and mm_projector are both float32 | |
return vision_features, vision_features_before_mm_projection | |
def prepare_inputs_labels_for_multimodal( | |
self, input_ids, attention_mask, past_key_values, labels, images | |
): | |
vision_tower = self.get_vision_tower() | |
if vision_tower is None or images is None or input_ids.shape[1] == 1: | |
if ( | |
past_key_values is not None | |
and vision_tower is not None | |
and images is not None | |
and input_ids.shape[1] == 1 | |
): | |
attention_mask = torch.ones( | |
(attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
) | |
vision_features_before_mm_projection = images | |
return ( | |
input_ids, | |
attention_mask, | |
past_key_values, | |
None, | |
labels, | |
vision_features_before_mm_projection, | |
) | |
start_time_encode_images = time.time() | |
if not isinstance(images, SparseTensor) and (type(images) is list or images.ndim == 5): | |
concat_images = torch.cat([image for image in images], dim=0) | |
vision_features, vision_features_before_mm_projection = self.encode_images( | |
concat_images | |
) | |
split_sizes = [image.shape[0] for image in images] | |
vision_features = torch.split(vision_features, split_sizes, dim=0) | |
vision_features = [x.flatten(0, 1) for x in vision_features] | |
else: | |
vision_features, vision_features_before_mm_projection = self.encode_images(images) | |
if PROFILE_RUNTIME: | |
logger.info(f"Time to encode images: {time.time() - start_time_encode_images}") | |
start_time_for_loop = time.time() | |
new_input_embeds = [] | |
new_labels = [] if labels is not None else None | |
cur_image_idx = 0 | |
for batch_idx, cur_input_ids in enumerate(input_ids): | |
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: | |
# multimodal LLM, but the current sample is not multimodal | |
cur_input_embeds = self.get_model().embed_tokens(cur_input_ids) | |
cur_input_embeds = ( | |
cur_input_embeds | |
+ (0.0 * self.get_model().mm_projector(vision_tower.dummy_feature)).sum() | |
) | |
new_input_embeds.append(cur_input_embeds) | |
if labels is not None: | |
new_labels.append(labels[batch_idx]) | |
cur_image_idx += 1 | |
continue | |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] | |
cur_new_input_embeds = [] | |
if labels is not None: | |
cur_labels = labels[batch_idx] | |
cur_new_labels = [] | |
assert cur_labels.shape == cur_input_ids.shape | |
# The following while loop looks for all image tokens in the current sentence | |
# and replace them with the corresponding image features. | |
while image_token_indices.numel() > 0: | |
cur_vision_features = vision_features[cur_image_idx] | |
image_token_start = image_token_indices[0] | |
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( | |
self.config, "mm_use_im_start_end", False | |
): | |
cur_new_input_embeds.append( | |
self.get_model() | |
.embed_tokens(cur_input_ids[: image_token_start - 1]) | |
.detach() | |
) | |
cur_new_input_embeds.append( | |
self.get_model().embed_tokens( | |
cur_input_ids[image_token_start - 1 : image_token_start] | |
) | |
) | |
cur_new_input_embeds.append(cur_vision_features) | |
cur_new_input_embeds.append( | |
self.get_model().embed_tokens( | |
cur_input_ids[image_token_start + 1 : image_token_start + 2] | |
) | |
) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:image_token_start]) | |
cur_new_labels.append( | |
torch.full( | |
(cur_vision_features.shape[0],), | |
IGNORE_INDEX, | |
device=labels.device, | |
dtype=labels.dtype, | |
) | |
) | |
cur_new_labels.append(cur_labels[image_token_start : image_token_start + 1]) | |
cur_labels = cur_labels[image_token_start + 2 :] | |
else: | |
cur_new_input_embeds.append( | |
self.get_model().embed_tokens(cur_input_ids[:image_token_start]) | |
) | |
cur_new_input_embeds.append(cur_vision_features) | |
if labels is not None: | |
cur_new_labels.append(cur_labels[:image_token_start]) | |
cur_new_labels.append( | |
torch.full( | |
(cur_vision_features.shape[0],), | |
IGNORE_INDEX, | |
device=labels.device, | |
dtype=labels.dtype, | |
) | |
) | |
cur_labels = cur_labels[image_token_start + 1 :] | |
cur_image_idx += 1 | |
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( | |
self.config, "mm_use_im_start_end", False | |
): | |
cur_input_ids = cur_input_ids[image_token_start + 2 :] | |
else: | |
cur_input_ids = cur_input_ids[image_token_start + 1 :] | |
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] | |
if cur_input_ids.numel() > 0: | |
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr( | |
self.config, "mm_use_im_start_end", False | |
): | |
cur_new_input_embeds.append( | |
self.get_model().embed_tokens(cur_input_ids).detach() | |
) | |
else: | |
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) | |
if labels is not None: | |
cur_new_labels.append(cur_labels) | |
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] | |
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) | |
new_input_embeds.append(cur_new_input_embeds) | |
if labels is not None: | |
cur_new_labels = torch.cat(cur_new_labels, dim=0) | |
new_labels.append(cur_new_labels) | |
if PROFILE_RUNTIME: | |
logger.info(f"Time for loop: {time.time() - start_time_for_loop}") | |
start_time_paddding = time.time() | |
# pad all sentences in batch to the same length | |
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): | |
max_len = max(x.shape[0] for x in new_input_embeds) | |
new_input_embeds_align = [] | |
for cur_new_embed in new_input_embeds: | |
cur_new_embed = torch.cat( | |
( | |
cur_new_embed, | |
torch.zeros( | |
(max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), | |
dtype=cur_new_embed.dtype, | |
device=cur_new_embed.device, | |
), | |
), | |
dim=0, | |
) | |
new_input_embeds_align.append(cur_new_embed) | |
new_input_embeds = torch.stack(new_input_embeds_align, dim=0) | |
if labels is not None: | |
new_labels_align = [] | |
_new_labels = new_labels | |
for cur_new_label in new_labels: | |
cur_new_label = torch.cat( | |
( | |
cur_new_label, | |
torch.full( | |
(max_len - cur_new_label.shape[0],), | |
IGNORE_INDEX, | |
dtype=cur_new_label.dtype, | |
device=cur_new_label.device, | |
), | |
), | |
dim=0, | |
) | |
new_labels_align.append(cur_new_label) | |
new_labels = torch.stack(new_labels_align, dim=0) | |
if attention_mask is not None: | |
new_attention_mask = [] | |
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip( | |
attention_mask, _new_labels, new_labels | |
): | |
new_attn_mask_pad_left = torch.full( | |
(cur_new_labels.shape[0] - labels.shape[1],), | |
True, | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
) | |
new_attn_mask_pad_right = torch.full( | |
(cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), | |
False, | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
) | |
cur_new_attention_mask = torch.cat( | |
( | |
new_attn_mask_pad_left, | |
cur_attention_mask, | |
new_attn_mask_pad_right, | |
), | |
dim=0, | |
) | |
new_attention_mask.append(cur_new_attention_mask) | |
attention_mask = torch.stack(new_attention_mask, dim=0) | |
assert attention_mask.shape == new_labels.shape | |
else: | |
new_input_embeds = torch.stack(new_input_embeds, dim=0) | |
if labels is not None: | |
new_labels = torch.stack(new_labels, dim=0) | |
if attention_mask is not None: | |
new_attn_mask_pad_left = torch.full( | |
( | |
attention_mask.shape[0], | |
new_input_embeds.shape[1] - input_ids.shape[1], | |
), | |
True, | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
) | |
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) | |
assert attention_mask.shape == new_input_embeds.shape[:2] | |
if PROFILE_RUNTIME: | |
logger.info(f"Time padding: {time.time() - start_time_paddding}") | |
return ( | |
None, | |
attention_mask, | |
past_key_values, | |
new_input_embeds, | |
new_labels, | |
vision_features_before_mm_projection, | |
) | |
def initialize_vision_tokenizer(self, model_args, tokenizer): | |
if model_args.mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if model_args.mm_use_im_start_end: | |
( | |
num_new_tokens, | |
input_embeddings, | |
output_embeddings, | |
) = self.add_special_tokens_and_resize_embeddings( | |
special_tokens_list=[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], | |
tokenizer=tokenizer, | |
) | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
if model_args.pretrain_mm_mlp_adapter: | |
mm_projector_weights = torch.load( | |
model_args.pretrain_mm_mlp_adapter, map_location="cpu" | |
) | |
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"] | |
assert num_new_tokens == 2 | |
if input_embeddings.shape == embed_tokens_weight.shape: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] | |
elif embed_tokens_weight.shape[0] == num_new_tokens: | |
input_embeddings[-num_new_tokens:] = embed_tokens_weight | |
else: | |
raise ValueError( | |
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}." | |
) | |
elif model_args.mm_use_im_patch_token: | |
if model_args.tune_mm_mlp_adapter: | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = False | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = False | |
# add special tokens if bbox_tokenization_type is location_tokens | |
if model_args.bbox_tokenization_type == "location_tokens": | |
num_special_tokens = model_args.num_voxels_per_axis_for_location_tokens**3 | |
self.add_special_tokens_and_resize_embeddings( | |
special_tokens_list=[f"<loc_{i}>" for i in range(num_special_tokens)], | |
tokenizer=tokenizer, | |
) | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = True | |
elif model_args.bbox_tokenization_type == "ground_token": | |
self.add_special_tokens_and_resize_embeddings( | |
special_tokens_list=[GROUND_TOKEN], tokenizer=tokenizer | |
) | |
for p in self.get_input_embeddings().parameters(): | |
p.requires_grad = True | |
for p in self.get_output_embeddings().parameters(): | |
p.requires_grad = True | |
# add special token to input id mapping | |
self.config.added_special_token_to_input_id = tokenizer.get_added_vocab() | |
def add_special_tokens_and_resize_embeddings( | |
self, | |
special_tokens_list: list[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
): | |
num_new_tokens = tokenizer.add_tokens(special_tokens_list, special_tokens=True) | |
self.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = self.get_input_embeddings().weight.data | |
output_embeddings = self.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
return num_new_tokens, input_embeddings, output_embeddings | |