3D-GRAND / llava /model /language_model /mpt /custom_embedding.py
jedyang97's picture
initial demo
947767a
raw
history blame
305 Bytes
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
class SharedEmbedding(nn.Embedding):
def forward(self, input: Tensor, unembed: bool=False) -> Tensor:
if unembed:
return F.linear(input, self.weight)
return super().forward(input)