Spaces:
Running
on
Zero
Running
on
Zero
from PIL import Image | |
from io import BytesIO | |
import base64 | |
import torch | |
from transformers import StoppingCriteria | |
from llava.constants import IMAGE_TOKEN_INDEX | |
import numpy as np | |
from llava.model.data_3d_util import ( | |
compute_max_extent_and_centroid, | |
unit_cube_normalization_in_place, | |
) | |
def prepare_3d_input_minkowski(pcd_file: str, input_color: bool, voxelizer): | |
pcd_data_np = np.load(pcd_file) # (num_points, 6) | |
locs_in = pcd_data_np[:, 3:] | |
rgb = np.rint(pcd_data_np[:, :3] * 255).astype(int) | |
# common trick to change the range of [-1, 1] | |
feats_in = rgb / 127.5 - 1 | |
# keep this operation if we have other data format | |
feats_in = (feats_in + 1.0) * 127.5 | |
labels_in = torch.ones(locs_in.shape[0]).int() | |
locs, feats, labels, inds_reconstruct = voxelizer.voxelize(locs_in, feats_in, labels_in) | |
coords = torch.from_numpy(locs).int() | |
coords = torch.cat((torch.zeros(coords.shape[0], 1, dtype=torch.int), coords), dim=1) | |
if input_color: | |
feats = torch.from_numpy(feats).float() / 127.5 - 1.0 | |
else: | |
feats = torch.ones(coords.shape[0], 3) | |
return coords, feats, inds_reconstruct | |
def prepare_3d_input( | |
pcd_file: str, | |
max_num_points: int, | |
is_normalize_points_to_unit_cube: bool, | |
mm_vision_tower: str, | |
) -> torch.Tensor: | |
# TODO: add support for MinkNet | |
if mm_vision_tower == "pointcloud-perceiver": | |
pcd_data = np.load(pcd_file) # (num_points, 768) | |
# note that the convention of the last 3 dimension of any npy flle is x, y, z | |
pcd_data_xyz = pcd_data[:, -3:] | |
max_extent, centroid = compute_max_extent_and_centroid(pcd_data_xyz, epsilon=1e-4) | |
if is_normalize_points_to_unit_cube: | |
unit_cube_normalization_in_place(pcd_data_xyz, max_extent, centroid) | |
pcd_data = torch.from_numpy(pcd_data).float() | |
pcd_attention_mask = torch.ones(pcd_data.shape[0], dtype=pcd_data.dtype) | |
# truncate or pad to NUM_POINTS datapoints along dim 0 | |
if pcd_data.shape[0] > max_num_points: | |
pcd_data = pcd_data[:max_num_points, :] | |
pcd_attention_mask = pcd_attention_mask[:max_num_points] | |
elif pcd_data.shape[0] < max_num_points: | |
padding = torch.zeros( | |
( | |
max_num_points - pcd_data.shape[0], | |
pcd_data.shape[1], | |
) | |
) | |
pcd_data = torch.cat((pcd_data, padding), dim=0) | |
# extend the attention mask with zeros for the padding points | |
attention_mask_padding = torch.zeros(padding.shape[0], dtype=torch.bool) | |
pcd_attention_mask = torch.cat((pcd_attention_mask, attention_mask_padding)) | |
# output shape: (num_points, 768 + 1) where the last dimension is the attention mask | |
output_tensor = torch.cat((pcd_data, pcd_attention_mask.unsqueeze(1)), dim=1) | |
return output_tensor.unsqueeze(0) # add batch dimension | |
def load_image_from_base64(image): | |
return Image.open(BytesIO(base64.b64decode(image))) | |
def process_images(images, image_processor, model_cfg): | |
return image_processor(images, return_tensors="pt")["pixel_values"] | |
def tokenizer_image_token( | |
prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None | |
): | |
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")] | |
def insert_separator(X, sep): | |
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] | |
input_ids = [] | |
offset = 0 | |
if ( | |
len(prompt_chunks) > 0 | |
and len(prompt_chunks[0]) > 0 | |
and prompt_chunks[0][0] == tokenizer.bos_token_id | |
): | |
offset = 1 | |
input_ids.append(prompt_chunks[0][0]) | |
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): | |
input_ids.extend(x[offset:]) | |
if return_tensors is not None: | |
if return_tensors == "pt": | |
return torch.tensor(input_ids, dtype=torch.long) | |
raise ValueError(f"Unsupported tensor type: {return_tensors}") | |
return input_ids | |
def get_model_name_from_path(model_path): | |
model_path = model_path.strip("/") | |
model_paths = model_path.split("/") | |
if model_paths[-1].startswith("checkpoint-"): | |
return model_paths[-2] + "_" + model_paths[-1] | |
else: | |
return model_paths[-1] | |
class KeywordsStoppingCriteria(StoppingCriteria): | |
def __init__(self, keywords, tokenizer, input_ids): | |
self.keywords = keywords | |
self.keyword_ids = [] | |
for keyword in keywords: | |
cur_keyword_ids = tokenizer(keyword).input_ids | |
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: | |
cur_keyword_ids = cur_keyword_ids[1:] | |
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) | |
self.tokenizer = tokenizer | |
self.start_len = input_ids.shape[1] | |
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO | |
offset = min(output_ids.shape[1] - self.start_len, 3) | |
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] | |
for keyword_id in self.keyword_ids: | |
if output_ids[0, -keyword_id.shape[0] :] == keyword_id: | |
return True | |
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] | |
for keyword in self.keywords: | |
if keyword in outputs: | |
return True | |
return False | |