Update app.py
Browse files
app.py
CHANGED
|
@@ -1,81 +1,55 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import joblib
|
| 3 |
import numpy as np
|
| 4 |
from collections import Counter
|
| 5 |
from typing import List
|
| 6 |
-
import os
|
| 7 |
-
|
| 8 |
-
# --- Helper Functions ---
|
| 9 |
-
BASES = ['A', 'T', 'C', 'G']
|
| 10 |
|
|
|
|
| 11 |
def kmer_counts(seq: str, k=3):
|
| 12 |
seq = seq.strip().upper()
|
| 13 |
counts = Counter()
|
| 14 |
if len(seq) < k:
|
| 15 |
return counts
|
| 16 |
-
for i in range(len(seq)
|
| 17 |
counts[seq[i:i+k]] += 1
|
| 18 |
return counts
|
| 19 |
|
| 20 |
def vectorize_single(seq: str, vocab: List[str], k=3):
|
| 21 |
-
|
| 22 |
c = kmer_counts(seq, k)
|
| 23 |
-
for j,
|
| 24 |
-
|
| 25 |
-
return
|
| 26 |
-
|
| 27 |
-
# --- Load Model ---
|
| 28 |
-
MODEL_PATH = "mutation_model.joblib"
|
| 29 |
-
|
| 30 |
-
if not os.path.exists(MODEL_PATH):
|
| 31 |
-
raise FileNotFoundError(
|
| 32 |
-
f"⚠️ Model file '{MODEL_PATH}' not found. "
|
| 33 |
-
"Please upload 'mutation_model.joblib' along with this app."
|
| 34 |
-
)
|
| 35 |
|
| 36 |
-
model
|
|
|
|
| 37 |
|
| 38 |
-
# --- Prediction Logic ---
|
| 39 |
def predict_sequence(sequence: str):
|
| 40 |
if not sequence or len(sequence.strip()) < 3:
|
| 41 |
-
return {"error":
|
| 42 |
-
|
| 43 |
X = vectorize_single(sequence, vocab=vocab, k=3)
|
| 44 |
pred = model.predict(X)[0]
|
| 45 |
prob = float(model.predict_proba(X).max()) if hasattr(model, "predict_proba") else None
|
| 46 |
-
|
| 47 |
return {
|
| 48 |
"sequence": sequence,
|
| 49 |
"mutation_detected": bool(pred),
|
| 50 |
-
"confidence":
|
| 51 |
}
|
| 52 |
|
| 53 |
-
#
|
| 54 |
-
with gr.Blocks(
|
| 55 |
-
gr.Markdown(
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
</p>
|
| 61 |
-
"""
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
with gr.Row():
|
| 65 |
-
seq_input = gr.Textbox(
|
| 66 |
-
label="DNA Sequence",
|
| 67 |
-
placeholder="Enter sequence like ATGCGTACGTTAGC...",
|
| 68 |
-
lines=2,
|
| 69 |
-
)
|
| 70 |
-
analyze_btn = gr.Button("🔍 Analyze Sequence")
|
| 71 |
-
result = gr.JSON(label="Analysis Result")
|
| 72 |
-
|
| 73 |
-
analyze_btn.click(fn=predict_sequence, inputs=seq_input, outputs=result)
|
| 74 |
|
| 75 |
-
#
|
|
|
|
| 76 |
def api_predict(payload: dict):
|
| 77 |
seq = payload.get("sequence", "")
|
| 78 |
return predict_sequence(seq)
|
| 79 |
|
| 80 |
if __name__ == "__main__":
|
| 81 |
-
demo.launch()
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
import joblib
|
| 4 |
import numpy as np
|
| 5 |
from collections import Counter
|
| 6 |
from typing import List
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# helper: k-mer extraction / vectorize (k=3)
|
| 9 |
def kmer_counts(seq: str, k=3):
|
| 10 |
seq = seq.strip().upper()
|
| 11 |
counts = Counter()
|
| 12 |
if len(seq) < k:
|
| 13 |
return counts
|
| 14 |
+
for i in range(len(seq)-k+1):
|
| 15 |
counts[seq[i:i+k]] += 1
|
| 16 |
return counts
|
| 17 |
|
| 18 |
def vectorize_single(seq: str, vocab: List[str], k=3):
|
| 19 |
+
x = np.zeros((1, len(vocab)), dtype=float)
|
| 20 |
c = kmer_counts(seq, k)
|
| 21 |
+
for j,kmer in enumerate(vocab):
|
| 22 |
+
x[0,j] = c.get(kmer, 0)
|
| 23 |
+
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# load model+vocab (mutation_model.joblib must be uploaded too)
|
| 26 |
+
model, vocab = joblib.load("mutation_model.joblib")
|
| 27 |
|
|
|
|
| 28 |
def predict_sequence(sequence: str):
|
| 29 |
if not sequence or len(sequence.strip()) < 3:
|
| 30 |
+
return {"error":"sequence too short"}
|
|
|
|
| 31 |
X = vectorize_single(sequence, vocab=vocab, k=3)
|
| 32 |
pred = model.predict(X)[0]
|
| 33 |
prob = float(model.predict_proba(X).max()) if hasattr(model, "predict_proba") else None
|
|
|
|
| 34 |
return {
|
| 35 |
"sequence": sequence,
|
| 36 |
"mutation_detected": bool(pred),
|
| 37 |
+
"confidence": prob
|
| 38 |
}
|
| 39 |
|
| 40 |
+
# Gradio UI
|
| 41 |
+
with gr.Blocks() as demo:
|
| 42 |
+
gr.Markdown("# DNA Mutation Detector (Quick Space)")
|
| 43 |
+
seq_in = gr.Textbox(label="DNA sequence", placeholder="ATGCGTACGTTAGC...")
|
| 44 |
+
btn = gr.Button("Analyze")
|
| 45 |
+
out = gr.JSON()
|
| 46 |
+
btn.click(fn=predict_sequence, inputs=seq_in, outputs=out)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
# Expose a simple inference API endpoint (Gradio provides /api/predict automatically)
|
| 49 |
+
# but we also expose a programmatic function name for convenience:
|
| 50 |
def api_predict(payload: dict):
|
| 51 |
seq = payload.get("sequence", "")
|
| 52 |
return predict_sequence(seq)
|
| 53 |
|
| 54 |
if __name__ == "__main__":
|
| 55 |
+
demo.launch() change
|