new tool
Browse files- PDF/reduce_pdf_size.py +52 -0
- image/remove_background_ai.py +291 -0
PDF/reduce_pdf_size.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import fitz # PyMuPDF
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
def extract_images_from_pdf(input_pdf: str, output_dir: str = "extracted_images"):
|
| 5 |
+
"""
|
| 6 |
+
Extract all images from a PDF and save them as individual image files.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
input_pdf (str): Path to the PDF file.
|
| 10 |
+
output_dir (str): Directory to save extracted images. Default is 'extracted_images'.
|
| 11 |
+
|
| 12 |
+
Returns:
|
| 13 |
+
List of saved image file paths.
|
| 14 |
+
"""
|
| 15 |
+
# Ensure output directory exists
|
| 16 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 17 |
+
|
| 18 |
+
# Open the PDF
|
| 19 |
+
pdf = fitz.open(input_pdf)
|
| 20 |
+
saved_images = []
|
| 21 |
+
|
| 22 |
+
print(f"Extracting images from: {input_pdf}")
|
| 23 |
+
|
| 24 |
+
for page_num in range(len(pdf)):
|
| 25 |
+
page = pdf[page_num]
|
| 26 |
+
images = page.get_images(full=True)
|
| 27 |
+
|
| 28 |
+
for img_index, img in enumerate(images):
|
| 29 |
+
xref = img[0]
|
| 30 |
+
base_image = pdf.extract_image(xref)
|
| 31 |
+
image_bytes = base_image["image"]
|
| 32 |
+
image_ext = base_image["ext"]
|
| 33 |
+
image_filename = f"page{page_num+1}_img{img_index+1}.{image_ext}"
|
| 34 |
+
|
| 35 |
+
output_path = os.path.join(output_dir, image_filename)
|
| 36 |
+
with open(output_path, "wb") as img_file:
|
| 37 |
+
img_file.write(image_bytes)
|
| 38 |
+
|
| 39 |
+
saved_images.append(output_path)
|
| 40 |
+
print(f"Saved: {output_path}")
|
| 41 |
+
|
| 42 |
+
pdf.close()
|
| 43 |
+
|
| 44 |
+
if saved_images:
|
| 45 |
+
print(f"β
Extracted {len(saved_images)} images to: {output_dir}")
|
| 46 |
+
else:
|
| 47 |
+
print("β οΈ No images found in the PDF.")
|
| 48 |
+
|
| 49 |
+
return saved_images
|
| 50 |
+
|
| 51 |
+
# Example usage
|
| 52 |
+
extract_images_from_pdf("../CaptionCreator/media/Jebin passport.pdf")
|
image/remove_background_ai.py
ADDED
|
@@ -0,0 +1,291 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import warnings
|
| 2 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 3 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
| 4 |
+
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import torch
|
| 8 |
+
from torchvision import transforms
|
| 9 |
+
from transformers import AutoModelForImageSegmentation
|
| 10 |
+
import numpy as np
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
import os
|
| 14 |
+
import gc
|
| 15 |
+
from .remove_background import RemoveBackground
|
| 16 |
+
from custom_logger import logger_config
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class RemoveBackgroundAI(RemoveBackground):
|
| 20 |
+
def __init__(self, model_name='briaai/RMBG-2.0', device='cuda' if torch.cuda.is_available() else 'cpu', image_size=(1024, 1024)):
|
| 21 |
+
"""
|
| 22 |
+
Initialize the BackgroundRemover with a pre-trained model.
|
| 23 |
+
"""
|
| 24 |
+
super().__init__("remove_background_ai")
|
| 25 |
+
self.device = device
|
| 26 |
+
self.image_size = image_size
|
| 27 |
+
|
| 28 |
+
# Load the model
|
| 29 |
+
self.model = AutoModelForImageSegmentation.from_pretrained(model_name, trust_remote_code=True)
|
| 30 |
+
if device == 'cuda':
|
| 31 |
+
torch.set_float32_matmul_precision('high')
|
| 32 |
+
self.model.to(device)
|
| 33 |
+
self.model.eval()
|
| 34 |
+
|
| 35 |
+
# Define image transformations
|
| 36 |
+
self.transform = transforms.Compose([
|
| 37 |
+
transforms.Resize(image_size, antialias=True),
|
| 38 |
+
transforms.ToTensor(),
|
| 39 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
| 40 |
+
])
|
| 41 |
+
|
| 42 |
+
def process(self, image_path, output_path=None, save_alpha=True):
|
| 43 |
+
"""
|
| 44 |
+
Remove background while preserving exact foreground position and size.
|
| 45 |
+
|
| 46 |
+
Args:
|
| 47 |
+
image_path (str or Path): Path to the input image
|
| 48 |
+
output_path (str or Path, optional): Path to save the output image
|
| 49 |
+
save_alpha (bool): If True, save with transparency (PNG RGBA), else black background
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
PIL.Image: Processed image with background removed
|
| 53 |
+
"""
|
| 54 |
+
# Load and preprocess the image
|
| 55 |
+
image = Image.open(image_path).convert("RGB")
|
| 56 |
+
original_size = image.size
|
| 57 |
+
input_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
| 58 |
+
|
| 59 |
+
# Generate the mask
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
preds = self.model(input_tensor)[-1].sigmoid().cpu()
|
| 62 |
+
pred = preds[0].squeeze()
|
| 63 |
+
mask_pil = transforms.ToPILImage()(pred)
|
| 64 |
+
mask = mask_pil.resize(image.size, Image.LANCZOS)
|
| 65 |
+
|
| 66 |
+
# Create result image preserving exact position and size
|
| 67 |
+
if save_alpha:
|
| 68 |
+
# Create RGBA image with transparency
|
| 69 |
+
result_image = Image.new("RGBA", original_size, (0, 0, 0, 0))
|
| 70 |
+
image_rgba = image.convert("RGBA")
|
| 71 |
+
|
| 72 |
+
# Apply mask to create transparency
|
| 73 |
+
mask_array = np.array(mask)
|
| 74 |
+
image_array = np.array(image_rgba)
|
| 75 |
+
|
| 76 |
+
# Set alpha channel based on mask
|
| 77 |
+
image_array[:, :, 3] = mask_array
|
| 78 |
+
|
| 79 |
+
result_image = Image.fromarray(image_array)
|
| 80 |
+
else:
|
| 81 |
+
# Create RGB image with black background
|
| 82 |
+
result_image = Image.new("RGB", original_size, (0, 0, 0))
|
| 83 |
+
# Paste original image using mask
|
| 84 |
+
result_image.paste(image, mask=mask)
|
| 85 |
+
|
| 86 |
+
# Save output if path provided
|
| 87 |
+
if output_path:
|
| 88 |
+
if isinstance(output_path, Path):
|
| 89 |
+
output_path = str(output_path)
|
| 90 |
+
|
| 91 |
+
if save_alpha:
|
| 92 |
+
# Ensure PNG extension for transparency
|
| 93 |
+
if not output_path.lower().endswith('.png'):
|
| 94 |
+
output_path = os.path.splitext(output_path)[0] + '.png'
|
| 95 |
+
result_image.save(output_path, format="PNG")
|
| 96 |
+
else:
|
| 97 |
+
result_image.save(output_path)
|
| 98 |
+
|
| 99 |
+
return result_image
|
| 100 |
+
|
| 101 |
+
def remove_background(self, image_path, output_path=None, crop=False, bg_color=(0, 0, 0), save_alpha=False, keep_size=True, skip_crop=False):
|
| 102 |
+
"""
|
| 103 |
+
Original method - kept for backward compatibility.
|
| 104 |
+
For preserving exact position/size, use remove_background_preserve_position() instead.
|
| 105 |
+
"""
|
| 106 |
+
# Load and preprocess the image
|
| 107 |
+
image = Image.open(image_path).convert("RGB")
|
| 108 |
+
original_size = image.size
|
| 109 |
+
input_tensor = self.transform(image).unsqueeze(0).to(self.device)
|
| 110 |
+
|
| 111 |
+
# Generate the mask
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
preds = self.model(input_tensor)[-1].sigmoid().cpu()
|
| 114 |
+
pred = preds[0].squeeze()
|
| 115 |
+
mask_pil = transforms.ToPILImage()(pred)
|
| 116 |
+
mask = mask_pil.resize(image.size)
|
| 117 |
+
|
| 118 |
+
# Create RGBA image with transparency
|
| 119 |
+
image_rgba = image.convert("RGBA")
|
| 120 |
+
temp_image = Image.new("RGBA", image.size, (0, 0, 0, 0))
|
| 121 |
+
temp_image.paste(image_rgba, mask=mask)
|
| 122 |
+
|
| 123 |
+
# Skip cropping if requested
|
| 124 |
+
if skip_crop:
|
| 125 |
+
print(f"Skipping cropping for {image_path}")
|
| 126 |
+
else:
|
| 127 |
+
# Crop if requested
|
| 128 |
+
if crop:
|
| 129 |
+
temp_image = self._crop_to_content(temp_image)
|
| 130 |
+
if keep_size:
|
| 131 |
+
# Paste cropped image back onto original canvas size
|
| 132 |
+
padded_image = Image.new("RGBA", original_size, (0, 0, 0, 0))
|
| 133 |
+
offset_x = (original_size[0] - temp_image.size[0]) // 2
|
| 134 |
+
offset_y = (original_size[1] - temp_image.size[1]) // 2
|
| 135 |
+
padded_image.paste(temp_image, (offset_x, offset_y))
|
| 136 |
+
temp_image = padded_image
|
| 137 |
+
|
| 138 |
+
# Save output
|
| 139 |
+
if output_path:
|
| 140 |
+
if isinstance(output_path, Path):
|
| 141 |
+
output_path = str(output_path)
|
| 142 |
+
|
| 143 |
+
if save_alpha:
|
| 144 |
+
if not output_path.lower().endswith('.png'):
|
| 145 |
+
output_path = os.path.splitext(output_path)[0] + '.png'
|
| 146 |
+
temp_image.save(output_path, format="PNG")
|
| 147 |
+
else:
|
| 148 |
+
bg_image = Image.new("RGB", temp_image.size, bg_color)
|
| 149 |
+
bg_image.paste(temp_image, mask=temp_image.split()[3])
|
| 150 |
+
bg_image.save(output_path)
|
| 151 |
+
|
| 152 |
+
return temp_image
|
| 153 |
+
|
| 154 |
+
def _crop_to_content(self, image):
|
| 155 |
+
"""
|
| 156 |
+
Crop the image to the bounding box of the non-transparent content.
|
| 157 |
+
"""
|
| 158 |
+
img_array = np.array(image)
|
| 159 |
+
alpha_channel = img_array[:, :, 3]
|
| 160 |
+
non_empty_columns = np.where(alpha_channel.max(axis=0) > 0)[0]
|
| 161 |
+
non_empty_rows = np.where(alpha_channel.max(axis=1) > 0)[0]
|
| 162 |
+
|
| 163 |
+
if len(non_empty_columns) > 0 and len(non_empty_rows) > 0:
|
| 164 |
+
crop_box = (
|
| 165 |
+
non_empty_columns.min(),
|
| 166 |
+
non_empty_rows.min(),
|
| 167 |
+
non_empty_columns.max() + 1,
|
| 168 |
+
non_empty_rows.max() + 1
|
| 169 |
+
)
|
| 170 |
+
return image.crop(crop_box)
|
| 171 |
+
|
| 172 |
+
return image
|
| 173 |
+
|
| 174 |
+
def cleanup(self):
|
| 175 |
+
"""
|
| 176 |
+
Clean up resources used by the model.
|
| 177 |
+
"""
|
| 178 |
+
if self.device == 'cuda':
|
| 179 |
+
self.model.to('cpu')
|
| 180 |
+
del self.model
|
| 181 |
+
if torch.cuda.is_available():
|
| 182 |
+
torch.cuda.empty_cache()
|
| 183 |
+
gc.collect()
|
| 184 |
+
print("Model unloaded and resources cleaned up")
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def remove_background_batch(folder, output_path=None, save_alpha=True, preserve_position=True):
|
| 188 |
+
"""
|
| 189 |
+
Process all images in a folder and remove backgrounds while preserving position and size.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
folder (str): Folder containing images to process
|
| 193 |
+
output_path (str): Output folder path
|
| 194 |
+
save_alpha (bool): If True, saves output as PNG with transparency
|
| 195 |
+
preserve_position (bool): If True, keeps foreground in exact original position
|
| 196 |
+
"""
|
| 197 |
+
remover = BackgroundRemover()
|
| 198 |
+
input_path = Path(folder)
|
| 199 |
+
|
| 200 |
+
# Create output directory if it doesn't exist
|
| 201 |
+
if output_path:
|
| 202 |
+
Path(output_path).mkdir(parents=True, exist_ok=True)
|
| 203 |
+
|
| 204 |
+
# Find all image files
|
| 205 |
+
image_files = []
|
| 206 |
+
for ext in ['jpg', 'jpeg', 'png', 'bmp', 'tiff', 'webp']:
|
| 207 |
+
image_files.extend(input_path.glob(f"*.{ext}"))
|
| 208 |
+
image_files.extend(input_path.glob(f"*.{ext.upper()}"))
|
| 209 |
+
|
| 210 |
+
print(f"Found {len(image_files)} images to process")
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
for img_path in tqdm(image_files, desc="Removing Background", unit="image"):
|
| 214 |
+
try:
|
| 215 |
+
# Determine output filename
|
| 216 |
+
if output_path:
|
| 217 |
+
output_filename = os.path.basename(img_path)
|
| 218 |
+
if save_alpha and not output_filename.lower().endswith('.png'):
|
| 219 |
+
output_filename = os.path.splitext(output_filename)[0] + '.png'
|
| 220 |
+
output_file = os.path.join(output_path, output_filename)
|
| 221 |
+
else:
|
| 222 |
+
output_file = img_path
|
| 223 |
+
|
| 224 |
+
if preserve_position:
|
| 225 |
+
# Use the new method that preserves exact position
|
| 226 |
+
remover.remove_background_preserve_position(
|
| 227 |
+
image_path=img_path,
|
| 228 |
+
output_path=output_file,
|
| 229 |
+
save_alpha=save_alpha
|
| 230 |
+
)
|
| 231 |
+
else:
|
| 232 |
+
# Use original method with no cropping
|
| 233 |
+
remover.remove_background(
|
| 234 |
+
image_path=img_path,
|
| 235 |
+
output_path=output_file,
|
| 236 |
+
crop=False, # No cropping to preserve position
|
| 237 |
+
bg_color=(0, 0, 0),
|
| 238 |
+
save_alpha=save_alpha,
|
| 239 |
+
skip_crop=True
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
# print(f"β Processed: {os.path.basename(img_path)}")
|
| 243 |
+
|
| 244 |
+
except Exception as e:
|
| 245 |
+
print(f"β Error processing {img_path}: {str(e)}")
|
| 246 |
+
|
| 247 |
+
except KeyboardInterrupt:
|
| 248 |
+
print("\nProcessing interrupted by user")
|
| 249 |
+
finally:
|
| 250 |
+
remover.cleanup()
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
# Single image processing function
|
| 254 |
+
def process(image_path, output_path=None, save_alpha=True):
|
| 255 |
+
"""
|
| 256 |
+
Process a single image and remove background while preserving position and size.
|
| 257 |
+
|
| 258 |
+
Args:
|
| 259 |
+
image_path (str): Path to input image
|
| 260 |
+
output_path (str, optional): Path to save output image
|
| 261 |
+
save_alpha (bool): If True, saves with transparency
|
| 262 |
+
|
| 263 |
+
Returns:
|
| 264 |
+
PIL.Image: Processed image
|
| 265 |
+
"""
|
| 266 |
+
remover = RemoveBackgroundAI()
|
| 267 |
+
|
| 268 |
+
try:
|
| 269 |
+
result = remover.remove_background_preserve_position(
|
| 270 |
+
image_path=image_path,
|
| 271 |
+
output_path=output_path,
|
| 272 |
+
save_alpha=save_alpha
|
| 273 |
+
)
|
| 274 |
+
print(f"β Successfully processed: {os.path.basename(image_path)}")
|
| 275 |
+
return result
|
| 276 |
+
except Exception as e:
|
| 277 |
+
print(f"β Error processing {image_path}: {str(e)}")
|
| 278 |
+
return None
|
| 279 |
+
finally:
|
| 280 |
+
remover.cleanup()
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
# Example usage
|
| 284 |
+
if __name__ == "__main__":
|
| 285 |
+
# Process entire folder - preserves exact position and size
|
| 286 |
+
remove_background_batch(
|
| 287 |
+
folder="../CaptionCreator/media/puzzle_x_pic/",
|
| 288 |
+
output_path="../CaptionCreator/media/processed/",
|
| 289 |
+
save_alpha=True,
|
| 290 |
+
preserve_position=True
|
| 291 |
+
)
|