|
import gradio as gr |
|
from PIL import Image |
|
import requests |
|
import hopsworks |
|
import joblib |
|
import pandas as pd |
|
|
|
project = hopsworks.login() |
|
fs = project.get_feature_store() |
|
|
|
|
|
mr = project.get_model_registry() |
|
model = mr.get_model("iris_model", version=1) |
|
model_dir = model.download() |
|
model = joblib.load(model_dir + "/iris_model.pkl") |
|
print("Model downloaded") |
|
|
|
def iris(sepal_length, sepal_width, petal_length, petal_width): |
|
print("Calling function") |
|
|
|
df = pd.DataFrame([[sepal_length,sepal_width,petal_length,petal_width]], |
|
columns=['sepal_length','sepal_width','petal_length','petal_width']) |
|
print("Predicting") |
|
print(df) |
|
|
|
res = model.predict(df) |
|
|
|
|
|
|
|
print(res) |
|
flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png" |
|
img = Image.open(requests.get(flower_url, stream=True).raw) |
|
return img |
|
|
|
demo = gr.Interface( |
|
fn=iris, |
|
title="Iris Flower Predictive Analytics", |
|
description="Experiment with sepal/petal lengths/widths to predict which flower it is.", |
|
allow_flagging="never", |
|
inputs=[ |
|
gr.inputs.Number(default=2.0, label="sepal length (cm)"), |
|
gr.inputs.Number(default=1.0, label="sepal width (cm)"), |
|
gr.inputs.Number(default=2.0, label="petal length (cm)"), |
|
gr.inputs.Number(default=1.0, label="petal width (cm)"), |
|
], |
|
outputs=gr.Image(type="pil")) |
|
|
|
demo.launch(debug=True) |
|
|
|
|