Spaces:
Sleeping
Sleeping
| import json | |
| import time | |
| import pickle | |
| import joblib | |
| import hopsworks | |
| import streamlit as st | |
| from geopy import distance | |
| import plotly.express as px | |
| import folium | |
| from streamlit_folium import st_folium | |
| from functions import * | |
| def print_fancy_header(text, font_size=22, color="#ff5f27"): | |
| res = f'<span style="color:{color}; font-size: {font_size}px;">{text}</span>' | |
| st.markdown(res, unsafe_allow_html=True) | |
| # I want to cache this so streamlit would run much faster after restart (it restarts a lot) | |
| def get_feature_view(): | |
| st.write("Getting the Feature View...") | |
| feature_view = fs.get_feature_view( | |
| name = 'air_quality_fv', | |
| version = 1 | |
| ) | |
| st.write("β Success!") | |
| return feature_view | |
| def get_batch_data_from_fs(td_version, date_threshold): | |
| st.write(f"Retrieving the Batch data since {date_threshold}") | |
| feature_view.init_batch_scoring(training_dataset_version=td_version) | |
| batch_data = feature_view.get_batch_data(start_time=date_threshold) | |
| return batch_data | |
| def download_model(name="air_quality_xgboost_model", | |
| version=1): | |
| mr = project.get_model_registry() | |
| retrieved_model = mr.get_model( | |
| name="air_quality_xgboost_model", | |
| version=1 | |
| ) | |
| saved_model_dir = retrieved_model.download() | |
| return saved_model_dir | |
| def plot_pm2_5(df): | |
| # create figure with plotly express | |
| fig = px.line(df, x='date', y='pm2_5', color='city_name') | |
| # customize line colors and styles | |
| fig.update_traces(mode='lines+markers') | |
| fig.update_layout({ | |
| 'plot_bgcolor': 'rgba(0, 0, 0, 0)', | |
| 'paper_bgcolor': 'rgba(0, 0, 0, 0)', | |
| 'legend_title': 'City', | |
| 'legend_font': {'size': 12}, | |
| 'legend_bgcolor': 'rgba(0, 0, 0, 0)', | |
| 'xaxis': {'title': 'Date'}, | |
| 'yaxis': {'title': 'PM2.5'}, | |
| 'shapes': [{ | |
| 'type': 'line', | |
| 'x0': datetime.datetime.now().strftime('%Y-%m-%d'), | |
| 'y0': 0, | |
| 'x1': datetime.datetime.now().strftime('%Y-%m-%d'), | |
| 'y1': df['pm2_5'].max(), | |
| 'line': {'color': 'red', 'width': 2, 'dash': 'dashdot'} | |
| }] | |
| }) | |
| # show plot | |
| st.plotly_chart(fig, use_container_width=True) | |
| with open('target_cities.json') as json_file: | |
| target_cities = json.load(json_file) | |
| ######################### | |
| st.title('π« Air Quality Prediction π¦') | |
| st.write(3 * "-") | |
| print_fancy_header('\nπ‘ Connecting to Hopsworks Feature Store...') | |
| st.write("Logging... ") | |
| # (Attention! If the app has stopped at this step, | |
| # please enter your Hopsworks API Key in the commmand prompt.) | |
| project = hopsworks.login() | |
| fs = project.get_feature_store() | |
| st.write("β Logged in successfully!") | |
| feature_view = get_feature_view() | |
| # I am going to load data for of last 60 days (for feature engineering) | |
| today = datetime.date.today() | |
| date_threshold = today | |
| #- datetime.timedelta(days=60) | |
| st.write(3 * "-") | |
| print_fancy_header('\nβοΈ Retriving batch data from Feature Store...') | |
| batch_data = get_batch_data_from_fs(td_version=1, | |
| date_threshold=date_threshold) | |
| st.write("Batch data:") | |
| st.write(batch_data.sample(5)) | |
| # + | |
| saved_model_dir = download_model( | |
| name="air_quality_xgboost_model", | |
| version=1 | |
| ) | |
| pipeline = joblib.load(saved_model_dir + "/xgboost_pipeline.pkl") | |
| st.write("\n") | |
| st.write("β Model was downloaded and cached.") | |
| # - | |
| st.write(3 * '-') | |
| st.write("\n") | |
| print_fancy_header(text="π Select the cities using the form below. \ | |
| Click the 'Submit' button at the bottom of the form to continue.", | |
| font_size=22) | |
| dict_for_streamlit = {} | |
| for continent in target_cities: | |
| for city_name, coords in target_cities[continent].items(): | |
| dict_for_streamlit[city_name] = coords | |
| selected_cities_full_list = [] | |
| with st.form(key="user_inputs"): | |
| print_fancy_header(text='\nπΊ Here you can choose cities from the drop-down menu', | |
| font_size=20, color="#00FFFF") | |
| cities_multiselect = st.multiselect(label='', | |
| options=dict_for_streamlit.keys()) | |
| selected_cities_full_list.extend(cities_multiselect) | |
| st.write("_" * 3) | |
| print_fancy_header(text="\nπ To add a city using the interactive map, click somewhere \ | |
| (for the coordinates to appear)", | |
| font_size=20, color="#00FFFF") | |
| my_map = folium.Map(location=[42.57, -44.092], zoom_start=2) | |
| # Add markers for each city | |
| for city_name, coords in dict_for_streamlit.items(): | |
| folium.CircleMarker( | |
| location=coords | |
| ).add_to(my_map) | |
| my_map.add_child(folium.LatLngPopup()) | |
| res_map = st_folium(my_map, width=640, height=480) | |
| try: | |
| new_lat, new_long = res_map["last_clicked"]["lat"], res_map["last_clicked"]["lng"] | |
| # Calculate the distance between the clicked location and each city | |
| distances = {city: distance.distance(coord, (new_lat, new_long)).km for city, coord in dict_for_streamlit.items()} | |
| # Find the city with the minimum distance and print its name | |
| nearest_city = min(distances, key=distances.get) | |
| print_fancy_header(text=f"You have selected {nearest_city} using map", font_size=18, color="#52fa23") | |
| selected_cities_full_list.append(nearest_city) | |
| # st.write(label_encoder.transform([nearest_city])[0]) | |
| except Exception as err: | |
| print(err) | |
| pass | |
| submit_button = st.form_submit_button(label='Submit') | |
| # + | |
| if submit_button: | |
| st.write('Selected cities:', selected_cities_full_list) | |
| st.write(3*'-') | |
| dataset = batch_data | |
| dataset = dataset.sort_values(by=["city_name", "date"]) | |
| st.write("\n") | |
| print_fancy_header(text='\nπ§ Predicting PM2.5 for selected cities...', | |
| font_size=18, color="#FDF4F5") | |
| st.write("") | |
| preds = pd.DataFrame(columns=dataset.columns) | |
| for city_name in selected_cities_full_list: | |
| st.write(f"\t * {city_name}...") | |
| features = dataset.loc[dataset['city_name'] == city_name] | |
| print(features.head()) | |
| features['pm2_5'] = pipeline.predict(features) | |
| preds = pd.concat([preds, features]) | |
| st.write("") | |
| print_fancy_header(text="πResults π", | |
| font_size=22) | |
| plot_pm2_5(preds[preds['city_name'].isin(selected_cities_full_list)]) | |
| st.write(3 * "-") | |
| st.subheader('\nπ π π€ App Finished Successfully π€ π π') | |
| st.button("Re-run") | |