Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,17 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
# Load the model and tokenizer from Hugging Face Hub
|
| 5 |
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
| 6 |
model = DistilBertForSequenceClassification.from_pretrained('jdmartinev/imdbreviews_classification_distilbert_v02')
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
def classify_text(input_text):
|
| 10 |
inputs = tokenizer(input_text, return_tensors="pt")
|
| 11 |
-
id2label = {0: "negative", 1: "positive"}
|
| 12 |
-
# Get model predictions
|
| 13 |
outputs = model(**inputs)
|
| 14 |
-
pred = np.argmax(outputs)
|
| 15 |
-
return
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
fn=classify_text,
|
| 21 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter text to classify"),
|
| 22 |
-
outputs=gr.Tex(label="Class"),
|
| 23 |
-
title="IMDB Review Classifier",
|
| 24 |
-
description="Classify IMDB reviews using a fine-tuned DistilBERT model with LoRA.",
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
# Launch the app
|
| 28 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
| 3 |
+
from huggingface_hub import hf_hub_download
|
| 4 |
+
import numpy as np
|
| 5 |
|
|
|
|
| 6 |
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
|
| 7 |
model = DistilBertForSequenceClassification.from_pretrained('jdmartinev/imdbreviews_classification_distilbert_v02')
|
| 8 |
+
id2label = {0: "negative", 1: "positive"}
|
| 9 |
|
| 10 |
+
def classify_text(input_text,id2label):
|
|
|
|
| 11 |
inputs = tokenizer(input_text, return_tensors="pt")
|
|
|
|
|
|
|
| 12 |
outputs = model(**inputs)
|
| 13 |
+
pred = np.argmax(outputs)
|
| 14 |
+
return(pred)
|
|
|
|
| 15 |
|
| 16 |
+
demo = gr.Interface(classify_text, "text", "text")
|
| 17 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|