subiendo utils y app
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import straemlit as st
|
2 |
+
|
3 |
+
from utils import carga_modelo, genera
|
4 |
+
|
5 |
+
## Pagina Principal
|
6 |
+
st.title("Generador de Mariposas")
|
7 |
+
st.write("Este es un modelo Light GAN entrenado y utilizado con Platzi")
|
8 |
+
|
9 |
+
# Barra lateral
|
10 |
+
st.sidebar.subheader("Esta mariposa no existe, ¿Puedes creerlo?")
|
11 |
+
st.sidebar.image("assets/logo.png", width=200)
|
12 |
+
st.sidebar.caption("Demo creado en vivo.")
|
13 |
+
|
14 |
+
## Cargamos el modelo
|
15 |
+
repo_id = "ceyda/butterfly_cropped_uniq1K_512"
|
16 |
+
modelo_gan = carga_modelo(repo_id)
|
17 |
+
|
18 |
+
#Generamos 4 mariposas
|
19 |
+
n_mariposas=4
|
20 |
+
|
21 |
+
def corre():
|
22 |
+
with st.spinner("Generando..."):
|
23 |
+
ims = genera(modelo_gan, n_mariposas)
|
24 |
+
st.session_state['ims'] = ims
|
25 |
+
|
26 |
+
if "ims" not in st.session_state:
|
27 |
+
st.session_state['ims'] = None
|
28 |
+
corre()
|
29 |
+
|
30 |
+
ims = st.session_state['ims']
|
31 |
+
|
32 |
+
corre_boton = st.button(
|
33 |
+
"Genera mariposas porfa",
|
34 |
+
on_click=corre,
|
35 |
+
help="Estamos en vuelo, abrocha tu cinturon."
|
36 |
+
)
|
37 |
+
|
38 |
+
if ims is not None:
|
39 |
+
cols = st.columns(n_mariposas)
|
40 |
+
for j, im in enumerate(ims):
|
41 |
+
i = j % n_mariposas
|
42 |
+
cols[i].image(im, use_column_width=True)
|
utils.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from huggan.pytorch.lightweight_gan import LightweightGAN
|
4 |
+
|
5 |
+
def carga_modelo(model_name="ceyda/butterfly_cropped_uniq1K_512", model_version=None):
|
6 |
+
gan=LightweightGAN.from_pretrained(model_name, version=model_version)
|
7 |
+
gan.eval()
|
8 |
+
return gan
|
9 |
+
|
10 |
+
def genera(gan, batch_size):
|
11 |
+
with torch.no_grad():
|
12 |
+
ims = gan.G(torch.randn(batch_size, gan, latent_dim)).clamp_(0.0, 1.0) * 255
|
13 |
+
ims = ims.permute(0,2,3,1).deatch().cpu().numpy().astype(np.uint8)
|
14 |
+
return ims
|