recorder / app.py
jcvsalinas's picture
Upload 3 files
4f12294 verified
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import librosa
import time
from datetime import datetime
import pandas as pd
HOME_DIR = ""
local_config_path = 'config.json'
local_preprocessor_config_path = 'preprocessor_config.json'
local_weights_path = 'pytorch_model.bin'
local_training_args_path = 'training_args.bin'
import torch
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm
# Define the id2label mapping
id2label = {
0: "angry",
1: "disgust",
2: "fear",
3: "happy",
4: "neutral",
5: "sad",
6: "surprise"
}
def predict(model, feature_extractor, data, max_length, id2label):
# Extract features
print(datetime.now().strftime('%Y-%m-%d%H:%M:%S'), ":Extracting features...")
inputs = feature_extractor(data, sampling_rate=16000, max_length=max_length, return_tensors='tf', padding=True, truncation=True)
torch_inputs = torch.tensor(inputs['input_values'].numpy(), dtype=torch.float32)
print(datetime.now().strftime('%Y-%m-%d%H:%M:%S'), ":Predicting...")
# Forward pass
outputs = model(input_values=torch_inputs)
# Extract logits from the output
logits = outputs
# Apply softmax to get probabilities
probabilities = F.softmax(logits, dim=-1)
# Get the predicted class index
predicted_class_idx = torch.argmax(probabilities, dim=-1).item()
predicted_label = id2label[predicted_class_idx]
#predicted_label = predicted_class_idx
return predicted_label, probabilities
from transformers import Wav2Vec2Config, Wav2Vec2Model
import torch.nn as nn
from huggingface_hub import PyTorchModelHubMixin
config = Wav2Vec2Config.from_pretrained(local_config_path)
class Wav2Vec2ForSpeechClassification(nn.Module, PyTorchModelHubMixin):
def __init__(self, config):
super(Wav2Vec2ForSpeechClassification, self).__init__()
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = nn.ModuleDict({
'dense': nn.Linear(config.hidden_size, config.hidden_size),
'activation': nn.ReLU(),
'dropout': nn.Dropout(config.final_dropout),
'out_proj': nn.Linear(config.hidden_size, config.num_labels)
})
def forward(self, input_values):
outputs = self.wav2vec2(input_values)
hidden_states = outputs.last_hidden_state
x = self.classifier['dense'](hidden_states[:, 0, :])
x = self.classifier['activation'](x)
x = self.classifier['dropout'](x)
logits = self.classifier['out_proj'](x)
return logits
import json
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2Processor
# Load the preprocessor configuration from the local file
with open(local_preprocessor_config_path, 'r') as file:
preprocessor_config = json.load(file)
# Initialize the preprocessor using the loaded configuration
feature_extractor = Wav2Vec2FeatureExtractor(
do_normalize=preprocessor_config["do_normalize"],
feature_extractor_type=preprocessor_config["feature_extractor_type"],
feature_size=preprocessor_config["feature_size"],
padding_side=preprocessor_config["padding_side"],
padding_value=preprocessor_config["padding_value"],
processor_class_from_name=preprocessor_config["processor_class"],
return_attention_mask=preprocessor_config["return_attention_mask"],
sampling_rate=preprocessor_config["sampling_rate"]
)
# load the newly finetuned model from huggingface repo
from huggingface_hub import hf_hub_download
model_path = hf_hub_download(
repo_id="kvilla/wav2vec-english-speech-emotion-recognition-finetuned",
filename="model_finetuned.pth"
)
# load the newly finetuned model! from local
saved_model = torch.load(model_path, map_location=torch.device('cpu'))
# Create the model with the loaded configuration
model = Wav2Vec2ForSpeechClassification(config=config)
# Load the state dictionary
model.load_state_dict(saved_model)
print("Model initialized successfully.")
model.eval()
def recognize_emotion(audio):
# Load the audio file using librosa
sample_rate, audio_data = audio
# Ensure audio data is in floating-point format
if not np.issubdtype(audio_data.dtype, np.floating):
audio_data = audio_data.astype(np.float32)
# If you still want to process it with librosa, e.g., to change sample rate:
if sample_rate != 16000:
print(datetime.now().strftime('%Y-%m-%d%H:%M:%S'), ":Resampling audio...")
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
emotion, probabilities = predict(model, feature_extractor, audio_data, 48000, id2label) # limit to 3seconds
print(probabilities)
probs = probabilities.detach().numpy().flatten().tolist()
print(probs)
# Convert probabilities to percentages
percentages = [round(prob * 100, 2) for prob in probs]
print(percentages)
# Define the class labels (adjust to match your specific model's class labels)
labels = ["angry", "disgust", "fear", "happy", "neutral", "sad", "surprise"]
print(labels)
# Create a DataFrame
df = pd.DataFrame({"Emotion": labels, "Probability (%)": percentages})
df = df.sort_values(by="Probability (%)", ascending=False)
print(datetime.now().strftime('%Y-%m-%d%H:%M:%S'), df)
return emotion, get_emotion_image(emotion), df
def get_emotion_image(emotion):
# Here, you would have a dictionary or logic to map emotions to images
emotion_to_image = {
"angry": "angry.jpeg",
"disgust": "disgust.jpeg",
"fear": "fear.jpeg",
"happy": "happy.jpeg",
"neutral": "neutral.jpeg",
"sad": "sad.jpeg",
"surprise": "surprise.jpeg"
# Add other emotions and their corresponding images
}
# Default image if emotion is not found
image_path = emotion_to_image.get(emotion, "default.jpg")
# Load and return the image
return Image.open(image_path)
demo = gr.Blocks()
with demo:
df_logs = pd.DataFrame(columns=['Timestamp', 'Emotion'])
theme= gr.themes.Soft(),
audio_input = gr.Audio(type="numpy",
sources=["microphone"],
show_label=True,
streaming=True
)
text_output = gr.Textbox(label="Recognized Emotion")
output_df = gr.DataFrame(label="Emotion Probabilities")
image_output = gr.Image(label="Emotion Image", scale = 1, interactive = False)
df_logs = gr.DataFrame(label="Output Logs", headers = ['Timestamp', 'Emotion'])
def process_audio(audio, emotion, image, state, df_probs, df_logs):
current_time = time.time()
if state is None or (current_time - state >= 10):
state = current_time
emotion, image, df_probs = recognize_emotion(audio)
# Sample prediction data
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# Create a dictionary for the new row
new_row = {'Timestamp': timestamp, 'Emotion': emotion}
# Append the new row to the DataFrame
df_logs = pd.concat([df_logs, pd.DataFrame([new_row])], ignore_index=True)
print(datetime.now().strftime('%Y-%m-%d%H:%M:%S'), "Predicted emotion: ", emotion)
return emotion, image, state, df_probs, df_logs
else:
print(datetime.now().strftime('%Y-%m-%d%H:%M:%S'), "Not yet time")
return emotion, image, state, df_probs, df_logs
# Automatically call the recognize_em otion function when audio is recorded
state = gr.State(None)
audio_input.stream(fn=process_audio, inputs=[audio_input, text_output, image_output, state, output_df, df_logs], outputs=[text_output, image_output, state, output_df, df_logs])
demo.launch(share=True)