Spaces:
Sleeping
Sleeping
update app.py, add log
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
from transformers import AutoModel, AutoTokenizer
|
4 |
|
5 |
# load model and tokenizer
|
@@ -10,6 +11,7 @@ model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-zh', trust_rem
|
|
10 |
def chunk_by_sentences(input_text: str, tokenizer: callable, separator: str):
|
11 |
inputs = tokenizer(input_text, return_tensors='pt', return_offsets_mapping=True)
|
12 |
punctuation_mark_id = tokenizer.convert_tokens_to_ids(separator)
|
|
|
13 |
print(f"separator: {separator}, punctuation_mark_id: {punctuation_mark_id}")
|
14 |
sep_id = tokenizer.eos_token_id
|
15 |
token_offsets = inputs['offset_mapping'][0]
|
@@ -57,6 +59,7 @@ def late_chunking(model_output, span_annotation, max_length=None):
|
|
57 |
|
58 |
|
59 |
def embedding_retriever(query_input, text_input, separator):
|
|
|
60 |
chunks, span_annotations = chunk_by_sentences(text_input, tokenizer, separator)
|
61 |
print(f"chunks: ", chunks)
|
62 |
inputs = tokenizer(text_input, return_tensors='pt', max_length=4096, truncation=True)
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
from datetime import datetime
|
4 |
from transformers import AutoModel, AutoTokenizer
|
5 |
|
6 |
# load model and tokenizer
|
|
|
11 |
def chunk_by_sentences(input_text: str, tokenizer: callable, separator: str):
|
12 |
inputs = tokenizer(input_text, return_tensors='pt', return_offsets_mapping=True)
|
13 |
punctuation_mark_id = tokenizer.convert_tokens_to_ids(separator)
|
14 |
+
print("time: ", datetime.now())
|
15 |
print(f"separator: {separator}, punctuation_mark_id: {punctuation_mark_id}")
|
16 |
sep_id = tokenizer.eos_token_id
|
17 |
token_offsets = inputs['offset_mapping'][0]
|
|
|
59 |
|
60 |
|
61 |
def embedding_retriever(query_input, text_input, separator):
|
62 |
+
print(f"query: {query_input}")
|
63 |
chunks, span_annotations = chunk_by_sentences(text_input, tokenizer, separator)
|
64 |
print(f"chunks: ", chunks)
|
65 |
inputs = tokenizer(text_input, return_tensors='pt', max_length=4096, truncation=True)
|