jbraun19's picture
Duplicate from awacke1/Webcam-Object-Recognition-Yolo-n-Coco
5c00143
raw
history blame contribute delete
No virus
19.5 kB
import numpy as np
import cv2
import pandas as pd
import operator
import matplotlib.pyplot as plt
import os
from sklearn.model_selection import train_test_split
from tensorflow.keras.utils import Sequence
from config import yolo_config
def load_weights(model, weights_file_path):
conv_layer_size = 110
conv_output_idxs = [93, 101, 109]
with open(weights_file_path, 'rb') as file:
major, minor, revision, seen, _ = np.fromfile(file, dtype=np.int32, count=5)
bn_idx = 0
for conv_idx in range(conv_layer_size):
conv_layer_name = f'conv2d_{conv_idx}' if conv_idx > 0 else 'conv2d'
bn_layer_name = f'batch_normalization_{bn_idx}' if bn_idx > 0 else 'batch_normalization'
conv_layer = model.get_layer(conv_layer_name)
filters = conv_layer.filters
kernel_size = conv_layer.kernel_size[0]
input_dims = conv_layer.input_shape[-1]
if conv_idx not in conv_output_idxs:
# darknet bn layer weights: [beta, gamma, mean, variance]
bn_weights = np.fromfile(file, dtype=np.float32, count=4 * filters)
# tf bn layer weights: [gamma, beta, mean, variance]
bn_weights = bn_weights.reshape((4, filters))[[1, 0, 2, 3]]
bn_layer = model.get_layer(bn_layer_name)
bn_idx += 1
else:
conv_bias = np.fromfile(file, dtype=np.float32, count=filters)
# darknet shape: (out_dim, input_dims, height, width)
# tf shape: (height, width, input_dims, out_dim)
conv_shape = (filters, input_dims, kernel_size, kernel_size)
conv_weights = np.fromfile(file, dtype=np.float32, count=np.product(conv_shape))
conv_weights = conv_weights.reshape(conv_shape).transpose([2, 3, 1, 0])
if conv_idx not in conv_output_idxs:
conv_layer.set_weights([conv_weights])
bn_layer.set_weights(bn_weights)
else:
conv_layer.set_weights([conv_weights, conv_bias])
if len(file.read()) == 0:
print('all weights read')
else:
print(f'failed to read all weights, # of unread weights: {len(file.read())}')
def get_detection_data(img, model_outputs, class_names):
"""
:param img: target raw image
:param model_outputs: outputs from inference_model
:param class_names: list of object class names
:return:
"""
num_bboxes = model_outputs[-1][0]
boxes, scores, classes = [output[0][:num_bboxes] for output in model_outputs[:-1]]
h, w = img.shape[:2]
df = pd.DataFrame(boxes, columns=['x1', 'y1', 'x2', 'y2'])
df[['x1', 'x2']] = (df[['x1', 'x2']] * w).astype('int64')
df[['y1', 'y2']] = (df[['y1', 'y2']] * h).astype('int64')
df['class_name'] = np.array(class_names)[classes.astype('int64')]
df['score'] = scores
df['w'] = df['x2'] - df['x1']
df['h'] = df['y2'] - df['y1']
print(f'# of bboxes: {num_bboxes}')
return df
def read_annotation_lines(annotation_path, test_size=None, random_seed=5566):
with open(annotation_path) as f:
lines = f.readlines()
if test_size:
return train_test_split(lines, test_size=test_size, random_state=random_seed)
else:
return lines
def draw_bbox(img, detections, cmap, random_color=True, figsize=(10, 10), show_img=True, show_text=True):
"""
Draw bounding boxes on the img.
:param img: BGR img.
:param detections: pandas DataFrame containing detections
:param random_color: assign random color for each objects
:param cmap: object colormap
:param plot_img: if plot img with bboxes
:return: None
"""
img = np.array(img)
scale = max(img.shape[0:2]) / 416
line_width = int(2 * scale)
for _, row in detections.iterrows():
x1, y1, x2, y2, cls, score, w, h = row.values
color = list(np.random.random(size=3) * 255) if random_color else cmap[cls]
cv2.rectangle(img, (x1, y1), (x2, y2), color, line_width)
if show_text:
text = f'{cls} {score:.2f}'
font = cv2.FONT_HERSHEY_DUPLEX
font_scale = max(0.3 * scale, 0.3)
thickness = max(int(1 * scale), 1)
(text_width, text_height) = cv2.getTextSize(text, font, fontScale=font_scale, thickness=thickness)[0]
cv2.rectangle(img, (x1 - line_width//2, y1 - text_height), (x1 + text_width, y1), color, cv2.FILLED)
cv2.putText(img, text, (x1, y1), font, font_scale, (255, 255, 255), thickness, cv2.LINE_AA)
if show_img:
plt.figure(figsize=figsize)
plt.imshow(img)
plt.show()
return img
class DataGenerator(Sequence):
"""
Generates data for Keras
ref: https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
"""
def __init__(self,
annotation_lines,
class_name_path,
folder_path,
max_boxes=100,
shuffle=True):
self.annotation_lines = annotation_lines
self.class_name_path = class_name_path
self.num_classes = len([line.strip() for line in open(class_name_path).readlines()])
self.num_gpu = yolo_config['num_gpu']
self.batch_size = yolo_config['batch_size'] * self.num_gpu
self.target_img_size = yolo_config['img_size']
self.anchors = np.array(yolo_config['anchors']).reshape((9, 2))
self.shuffle = shuffle
self.indexes = np.arange(len(self.annotation_lines))
self.folder_path = folder_path
self.max_boxes = max_boxes
self.on_epoch_end()
def __len__(self):
'number of batches per epoch'
return int(np.ceil(len(self.annotation_lines) / self.batch_size))
def __getitem__(self, index):
'Generate one batch of data'
# Generate indexes of the batch
idxs = self.indexes[index * self.batch_size:(index + 1) * self.batch_size]
# Find list of IDs
lines = [self.annotation_lines[i] for i in idxs]
# Generate data
X, y_tensor, y_bbox = self.__data_generation(lines)
return [X, *y_tensor, y_bbox], np.zeros(len(lines))
def on_epoch_end(self):
'Updates indexes after each epoch'
if self.shuffle:
np.random.shuffle(self.indexes)
def __data_generation(self, annotation_lines):
"""
Generates data containing batch_size samples
:param annotation_lines:
:return:
"""
X = np.empty((len(annotation_lines), *self.target_img_size), dtype=np.float32)
y_bbox = np.empty((len(annotation_lines), self.max_boxes, 5), dtype=np.float32) # x1y1x2y2
for i, line in enumerate(annotation_lines):
img_data, box_data = self.get_data(line)
X[i] = img_data
y_bbox[i] = box_data
y_tensor, y_true_boxes_xywh = preprocess_true_boxes(y_bbox, self.target_img_size[:2], self.anchors, self.num_classes)
return X, y_tensor, y_true_boxes_xywh
def get_data(self, annotation_line):
line = annotation_line.split()
img_path = line[0]
img = cv2.imread(os.path.join(self.folder_path, img_path))[:, :, ::-1]
ih, iw = img.shape[:2]
h, w, c = self.target_img_size
boxes = np.array([np.array(list(map(float, box.split(',')))) for box in line[1:]], dtype=np.float32) # x1y1x2y2
scale_w, scale_h = w / iw, h / ih
img = cv2.resize(img, (w, h))
image_data = np.array(img) / 255.
# correct boxes coordinates
box_data = np.zeros((self.max_boxes, 5))
if len(boxes) > 0:
np.random.shuffle(boxes)
boxes = boxes[:self.max_boxes]
boxes[:, [0, 2]] = boxes[:, [0, 2]] * scale_w # + dx
boxes[:, [1, 3]] = boxes[:, [1, 3]] * scale_h # + dy
box_data[:len(boxes)] = boxes
return image_data, box_data
def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
'''Preprocess true boxes to training input format
Parameters
----------
true_boxes: array, shape=(bs, max boxes per img, 5)
Absolute x_min, y_min, x_max, y_max, class_id relative to input_shape.
input_shape: array-like, hw, multiples of 32
anchors: array, shape=(N, 2), (9, wh)
num_classes: int
Returns
-------
y_true: list of array, shape like yolo_outputs, xywh are reletive value
'''
num_stages = 3 # default setting for yolo, tiny yolo will be 2
anchor_mask = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
bbox_per_grid = 3
true_boxes = np.array(true_boxes, dtype='float32')
true_boxes_abs = np.array(true_boxes, dtype='float32')
input_shape = np.array(input_shape, dtype='int32')
true_boxes_xy = (true_boxes_abs[..., 0:2] + true_boxes_abs[..., 2:4]) // 2 # (100, 2)
true_boxes_wh = true_boxes_abs[..., 2:4] - true_boxes_abs[..., 0:2] # (100, 2)
# Normalize x,y,w, h, relative to img size -> (0~1)
true_boxes[..., 0:2] = true_boxes_xy/input_shape[::-1] # xy
true_boxes[..., 2:4] = true_boxes_wh/input_shape[::-1] # wh
bs = true_boxes.shape[0]
grid_sizes = [input_shape//{0:8, 1:16, 2:32}[stage] for stage in range(num_stages)]
y_true = [np.zeros((bs,
grid_sizes[s][0],
grid_sizes[s][1],
bbox_per_grid,
5+num_classes), dtype='float32')
for s in range(num_stages)]
# [(?, 52, 52, 3, 5+num_classes) (?, 26, 26, 3, 5+num_classes) (?, 13, 13, 3, 5+num_classes) ]
y_true_boxes_xywh = np.concatenate((true_boxes_xy, true_boxes_wh), axis=-1)
# Expand dim to apply broadcasting.
anchors = np.expand_dims(anchors, 0) # (1, 9 , 2)
anchor_maxes = anchors / 2. # (1, 9 , 2)
anchor_mins = -anchor_maxes # (1, 9 , 2)
valid_mask = true_boxes_wh[..., 0] > 0 # (1, 100)
for batch_idx in range(bs):
# Discard zero rows.
wh = true_boxes_wh[batch_idx, valid_mask[batch_idx]] # (# of bbox, 2)
num_boxes = len(wh)
if num_boxes == 0: continue
wh = np.expand_dims(wh, -2) # (# of bbox, 1, 2)
box_maxes = wh / 2. # (# of bbox, 1, 2)
box_mins = -box_maxes # (# of bbox, 1, 2)
# Compute IoU between each anchors and true boxes for responsibility assignment
intersect_mins = np.maximum(box_mins, anchor_mins) # (# of bbox, 9, 2)
intersect_maxes = np.minimum(box_maxes, anchor_maxes)
intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = np.prod(intersect_wh, axis=-1) # (9,)
box_area = wh[..., 0] * wh[..., 1] # (# of bbox, 1)
anchor_area = anchors[..., 0] * anchors[..., 1] # (1, 9)
iou = intersect_area / (box_area + anchor_area - intersect_area) # (# of bbox, 9)
# Find best anchor for each true box
best_anchors = np.argmax(iou, axis=-1) # (# of bbox,)
for box_idx in range(num_boxes):
best_anchor = best_anchors[box_idx]
for stage in range(num_stages):
if best_anchor in anchor_mask[stage]:
x_offset = true_boxes[batch_idx, box_idx, 0]*grid_sizes[stage][1]
y_offset = true_boxes[batch_idx, box_idx, 1]*grid_sizes[stage][0]
# Grid Index
grid_col = np.floor(x_offset).astype('int32')
grid_row = np.floor(y_offset).astype('int32')
anchor_idx = anchor_mask[stage].index(best_anchor)
class_idx = true_boxes[batch_idx, box_idx, 4].astype('int32')
# y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 0] = x_offset - grid_col # x
# y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 1] = y_offset - grid_row # y
# y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, :4] = true_boxes_abs[batch_idx, box_idx, :4] # abs xywh
y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, :2] = true_boxes_xy[batch_idx, box_idx, :] # abs xy
y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 2:4] = true_boxes_wh[batch_idx, box_idx, :] # abs wh
y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 4] = 1 # confidence
y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 5+class_idx] = 1 # one-hot encoding
# smooth
# onehot = np.zeros(num_classes, dtype=np.float)
# onehot[class_idx] = 1.0
# uniform_distribution = np.full(num_classes, 1.0 / num_classes)
# delta = 0.01
# smooth_onehot = onehot * (1 - delta) + delta * uniform_distribution
# y_true[stage][batch_idx, grid_row, grid_col, anchor_idx, 5:] = smooth_onehot
return y_true, y_true_boxes_xywh
"""
Calculate the AP given the recall and precision array
1st) We compute a version of the measured precision/recall curve with
precision monotonically decreasing
2nd) We compute the AP as the area under this curve by numerical integration.
"""
def voc_ap(rec, prec):
"""
--- Official matlab code VOC2012---
mrec=[0 ; rec ; 1];
mpre=[0 ; prec ; 0];
for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
end
i=find(mrec(2:end)~=mrec(1:end-1))+1;
ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
rec.insert(0, 0.0) # insert 0.0 at begining of list
rec.append(1.0) # insert 1.0 at end of list
mrec = rec[:]
prec.insert(0, 0.0) # insert 0.0 at begining of list
prec.append(0.0) # insert 0.0 at end of list
mpre = prec[:]
"""
This part makes the precision monotonically decreasing
(goes from the end to the beginning)
matlab: for i=numel(mpre)-1:-1:1
mpre(i)=max(mpre(i),mpre(i+1));
"""
# matlab indexes start in 1 but python in 0, so I have to do:
# range(start=(len(mpre) - 2), end=0, step=-1)
# also the python function range excludes the end, resulting in:
# range(start=(len(mpre) - 2), end=-1, step=-1)
for i in range(len(mpre)-2, -1, -1):
mpre[i] = max(mpre[i], mpre[i+1])
"""
This part creates a list of indexes where the recall changes
matlab: i=find(mrec(2:end)~=mrec(1:end-1))+1;
"""
i_list = []
for i in range(1, len(mrec)):
if mrec[i] != mrec[i-1]:
i_list.append(i) # if it was matlab would be i + 1
"""
The Average Precision (AP) is the area under the curve
(numerical integration)
matlab: ap=sum((mrec(i)-mrec(i-1)).*mpre(i));
"""
ap = 0.0
for i in i_list:
ap += ((mrec[i]-mrec[i-1])*mpre[i])
return ap, mrec, mpre
"""
Draw plot using Matplotlib
"""
def draw_plot_func(dictionary, n_classes, window_title, plot_title, x_label, output_path, to_show, plot_color, true_p_bar):
# sort the dictionary by decreasing value, into a list of tuples
sorted_dic_by_value = sorted(dictionary.items(), key=operator.itemgetter(1))
print(sorted_dic_by_value)
# unpacking the list of tuples into two lists
sorted_keys, sorted_values = zip(*sorted_dic_by_value)
#
if true_p_bar != "":
"""
Special case to draw in:
- green -> TP: True Positives (object detected and matches ground-truth)
- red -> FP: False Positives (object detected but does not match ground-truth)
- pink -> FN: False Negatives (object not detected but present in the ground-truth)
"""
fp_sorted = []
tp_sorted = []
for key in sorted_keys:
fp_sorted.append(dictionary[key] - true_p_bar[key])
tp_sorted.append(true_p_bar[key])
plt.barh(range(n_classes), fp_sorted, align='center', color='crimson', label='False Positive')
plt.barh(range(n_classes), tp_sorted, align='center', color='forestgreen', label='True Positive', left=fp_sorted)
# add legend
plt.legend(loc='lower right')
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
fp_val = fp_sorted[i]
tp_val = tp_sorted[i]
fp_str_val = " " + str(fp_val)
tp_str_val = fp_str_val + " " + str(tp_val)
# trick to paint multicolor with offset:
# first paint everything and then repaint the first number
t = plt.text(val, i, tp_str_val, color='forestgreen', va='center', fontweight='bold')
plt.text(val, i, fp_str_val, color='crimson', va='center', fontweight='bold')
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
else:
plt.barh(range(n_classes), sorted_values, color=plot_color)
"""
Write number on side of bar
"""
fig = plt.gcf() # gcf - get current figure
axes = plt.gca()
r = fig.canvas.get_renderer()
for i, val in enumerate(sorted_values):
str_val = " " + str(val) # add a space before
if val < 1.0:
str_val = " {0:.2f}".format(val)
t = plt.text(val, i, str_val, color=plot_color, va='center', fontweight='bold')
# re-set axes to show number inside the figure
if i == (len(sorted_values)-1): # largest bar
adjust_axes(r, t, fig, axes)
# set window title
fig.canvas.set_window_title(window_title)
# write classes in y axis
tick_font_size = 12
plt.yticks(range(n_classes), sorted_keys, fontsize=tick_font_size)
"""
Re-scale height accordingly
"""
init_height = fig.get_figheight()
# comput the matrix height in points and inches
dpi = fig.dpi
height_pt = n_classes * (tick_font_size * 1.4) # 1.4 (some spacing)
height_in = height_pt / dpi
# compute the required figure height
top_margin = 0.15 # in percentage of the figure height
bottom_margin = 0.05 # in percentage of the figure height
figure_height = height_in / (1 - top_margin - bottom_margin)
# set new height
if figure_height > init_height:
fig.set_figheight(figure_height)
# set plot title
plt.title(plot_title, fontsize=14)
# set axis titles
# plt.xlabel('classes')
plt.xlabel(x_label, fontsize='large')
# adjust size of window
fig.tight_layout()
# save the plot
fig.savefig(output_path)
# show image
# if to_show:
plt.show()
# close the plot
# plt.close()
"""
Plot - adjust axes
"""
def adjust_axes(r, t, fig, axes):
# get text width for re-scaling
bb = t.get_window_extent(renderer=r)
text_width_inches = bb.width / fig.dpi
# get axis width in inches
current_fig_width = fig.get_figwidth()
new_fig_width = current_fig_width + text_width_inches
propotion = new_fig_width / current_fig_width
# get axis limit
x_lim = axes.get_xlim()
axes.set_xlim([x_lim[0], x_lim[1]*propotion])
def read_txt_to_list(path):
# open txt file lines to a list
with open(path) as f:
content = f.readlines()
# remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]
return content