Spaces:
Paused
Paused
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import tempfile | |
import gradio as gr | |
import imageio | |
import numpy as np | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler | |
DESCRIPTION = 'This space is an API service meant to be used by VideoChain and VideoQuest.\nWant to use this space for yourself? Please use the original code: [https://huggingface.co/spaces/hysts/zeroscope-v2](https://huggingface.co/spaces/hysts/zeroscope-v2)' | |
if not torch.cuda.is_available(): | |
DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>' | |
MAX_NUM_FRAMES = int(os.getenv('MAX_NUM_FRAMES', '200')) | |
DEFAULT_NUM_FRAMES = min(MAX_NUM_FRAMES, | |
int(os.getenv('DEFAULT_NUM_FRAMES', '24'))) | |
MAX_SEED = np.iinfo(np.int32).max | |
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') | |
if torch.cuda.is_available(): | |
pipe = DiffusionPipeline.from_pretrained('cerspense/zeroscope_v2_576w', | |
torch_dtype=torch.float16) | |
pipe.enable_model_cpu_offload() | |
else: | |
pipe = DiffusionPipeline.from_pretrained('cerspense/zeroscope_v2_576w') | |
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_vae_slicing() | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def to_video(frames: list[np.ndarray], fps: int) -> str: | |
out_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) | |
writer = imageio.get_writer(out_file.name, format='FFMPEG', fps=fps) | |
for frame in frames: | |
writer.append_data(frame) | |
writer.close() | |
return out_file.name | |
def generate(prompt: str, seed: int, num_frames: int, | |
num_inference_steps: int, | |
secret_token: str = '') -> str: | |
if secret_token != SECRET_TOKEN: | |
raise gr.Error( | |
f'Invalid secret token. Please fork the original space if you want to use it for yourself.') | |
generator = torch.Generator().manual_seed(seed) | |
frames = pipe(prompt, | |
num_inference_steps=num_inference_steps, | |
num_frames=num_frames, | |
width=576, | |
height=320, | |
generator=generator).frames | |
return to_video(frames, 8) | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
secret_token = gr.Text( | |
label='Secret Token', | |
max_lines=1, | |
placeholder='Enter your secret token', | |
) | |
with gr.Box(): | |
with gr.Row(): | |
prompt = gr.Text(label='Prompt', | |
show_label=False, | |
max_lines=1, | |
placeholder='Enter your prompt', | |
container=False) | |
run_button = gr.Button('Generate video', scale=0) | |
result = gr.Video(label='Result', show_label=False) | |
with gr.Accordion('Advanced options', open=False): | |
seed = gr.Slider(label='Seed', | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0) | |
randomize_seed = gr.Checkbox(label='Randomize seed', value=True) | |
num_frames = gr.Slider( | |
label='Number of frames', | |
minimum=24, | |
maximum=MAX_NUM_FRAMES, | |
step=1, | |
value=24, | |
info= | |
'Note that the content of the video also changes when you change the number of frames.' | |
) | |
num_inference_steps = gr.Slider(label='Number of inference steps', | |
minimum=10, | |
maximum=50, | |
step=1, | |
value=25) | |
inputs = [ | |
prompt, | |
seed, | |
num_frames, | |
num_inference_steps, | |
secret_token, | |
] | |
prompt.submit( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
api_name='run', | |
) | |
run_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
).then( | |
fn=generate, | |
inputs=inputs, | |
outputs=result, | |
) | |
demo.queue(max_size=3).launch() | |