Spaces:
Paused
Paused
Commit
·
9269fd4
1
Parent(s):
d15185d
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,6 @@ from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
|
|
10 |
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
12 |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
|
13 |
-
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
|
14 |
|
15 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
16 |
if torch.cuda.is_available():
|
@@ -45,12 +44,8 @@ def generate(prompt: str,
|
|
45 |
width: int = 1024,
|
46 |
height: int = 1024,
|
47 |
guidance_scale: float = 1.0,
|
48 |
-
num_inference_steps: int = 6
|
49 |
-
|
50 |
-
if secret_token != SECRET_TOKEN:
|
51 |
-
raise gr.Error(
|
52 |
-
f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
|
53 |
-
|
54 |
generator = torch.Generator().manual_seed(seed)
|
55 |
|
56 |
if not use_negative_prompt:
|
@@ -66,68 +61,63 @@ def generate(prompt: str,
|
|
66 |
output_type='pil').images[0]
|
67 |
|
68 |
with gr.Blocks() as demo:
|
69 |
-
gr.
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
step=1,
|
101 |
-
value=
|
102 |
-
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
|
103 |
|
104 |
-
width = gr.Slider(
|
105 |
-
label='Width',
|
106 |
-
minimum=256,
|
107 |
-
maximum=MAX_IMAGE_SIZE,
|
108 |
-
step=32,
|
109 |
-
value=1024,
|
110 |
-
)
|
111 |
-
height = gr.Slider(
|
112 |
-
label='Height',
|
113 |
-
minimum=256,
|
114 |
-
maximum=MAX_IMAGE_SIZE,
|
115 |
-
step=32,
|
116 |
-
value=1024,
|
117 |
-
)
|
118 |
-
guidance_scale = gr.Slider(
|
119 |
-
label='Guidance scale',
|
120 |
-
minimum=1,
|
121 |
-
maximum=20,
|
122 |
-
step=0.1,
|
123 |
-
value=1.0)
|
124 |
-
num_inference_steps = gr.Slider(
|
125 |
-
label='Number of inference steps',
|
126 |
-
minimum=2,
|
127 |
-
maximum=40,
|
128 |
-
step=1,
|
129 |
-
value=6)
|
130 |
-
|
131 |
use_negative_prompt.change(
|
132 |
fn=lambda x: gr.update(visible=x),
|
133 |
inputs=use_negative_prompt,
|
@@ -159,5 +149,29 @@ with gr.Blocks() as demo:
|
|
159 |
outputs=result,
|
160 |
api_name='run',
|
161 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
demo.queue(max_size=6).launch()
|
|
|
10 |
|
11 |
MAX_SEED = np.iinfo(np.int32).max
|
12 |
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
|
|
|
13 |
|
14 |
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
15 |
if torch.cuda.is_available():
|
|
|
44 |
width: int = 1024,
|
45 |
height: int = 1024,
|
46 |
guidance_scale: float = 1.0,
|
47 |
+
num_inference_steps: int = 6) -> PIL.Image.Image:
|
48 |
+
|
|
|
|
|
|
|
|
|
49 |
generator = torch.Generator().manual_seed(seed)
|
50 |
|
51 |
if not use_negative_prompt:
|
|
|
61 |
output_type='pil').images[0]
|
62 |
|
63 |
with gr.Blocks() as demo:
|
64 |
+
with gr.Row():
|
65 |
+
with gr.Row():
|
66 |
+
prompt = gr.Text(
|
67 |
+
label='Prompt',
|
68 |
+
show_label=False,
|
69 |
+
max_lines=1,
|
70 |
+
placeholder='Enter your prompt',
|
71 |
+
container=False,
|
72 |
+
)
|
73 |
+
run_button = gr.Button('Run', scale=0)
|
74 |
+
result = gr.Image(label='Result', show_label=False)
|
75 |
+
with gr.Accordion('Advanced options', open=False):
|
76 |
+
with gr.Row():
|
77 |
+
use_negative_prompt = gr.Checkbox(label='Use negative prompt',
|
78 |
+
value=False)
|
79 |
+
negative_prompt = gr.Text(
|
80 |
+
label='Negative prompt',
|
81 |
+
max_lines=1,
|
82 |
+
placeholder='Enter a negative prompt',
|
83 |
+
visible=False,
|
84 |
+
)
|
85 |
|
86 |
+
seed = gr.Slider(label='Seed',
|
87 |
+
minimum=0,
|
88 |
+
maximum=MAX_SEED,
|
89 |
+
step=1,
|
90 |
+
value=0)
|
91 |
+
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
|
92 |
+
with gr.Row():
|
93 |
+
width = gr.Slider(
|
94 |
+
label='Width',
|
95 |
+
minimum=256,
|
96 |
+
maximum=MAX_IMAGE_SIZE,
|
97 |
+
step=32,
|
98 |
+
value=1024,
|
99 |
+
)
|
100 |
+
height = gr.Slider(
|
101 |
+
label='Height',
|
102 |
+
minimum=256,
|
103 |
+
maximum=MAX_IMAGE_SIZE,
|
104 |
+
step=32,
|
105 |
+
value=1024,
|
106 |
+
)
|
107 |
+
with gr.Row():
|
108 |
+
guidance_scale = gr.Slider(
|
109 |
+
label='Guidance scale',
|
110 |
+
minimum=1,
|
111 |
+
maximum=20,
|
112 |
+
step=0.1,
|
113 |
+
value=5.0)
|
114 |
+
num_inference_steps = gr.Slider(
|
115 |
+
label='Number of inference steps',
|
116 |
+
minimum=2,
|
117 |
+
maximum=50,
|
118 |
step=1,
|
119 |
+
value=6)
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
use_negative_prompt.change(
|
122 |
fn=lambda x: gr.update(visible=x),
|
123 |
inputs=use_negative_prompt,
|
|
|
149 |
outputs=result,
|
150 |
api_name='run',
|
151 |
)
|
152 |
+
negative_prompt.submit(
|
153 |
+
fn=randomize_seed_fn,
|
154 |
+
inputs=[seed, randomize_seed],
|
155 |
+
outputs=seed,
|
156 |
+
queue=False,
|
157 |
+
api_name=False,
|
158 |
+
).then(
|
159 |
+
fn=generate,
|
160 |
+
inputs=inputs,
|
161 |
+
outputs=result,
|
162 |
+
api_name=False,
|
163 |
+
)
|
164 |
+
run_button.click(
|
165 |
+
fn=randomize_seed_fn,
|
166 |
+
inputs=[seed, randomize_seed],
|
167 |
+
outputs=seed,
|
168 |
+
queue=False,
|
169 |
+
api_name=False,
|
170 |
+
).then(
|
171 |
+
fn=generate,
|
172 |
+
inputs=inputs,
|
173 |
+
outputs=result,
|
174 |
+
api_name=False,
|
175 |
+
)
|
176 |
|
177 |
demo.queue(max_size=6).launch()
|