Doubiiu's picture
Update app.py
4afdd4d
raw
history blame
7.24 kB
import gradio as gr
import os
import sys
import argparse
import random
import time
from omegaconf import OmegaConf
import torch
import torchvision
from pytorch_lightning import seed_everything
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from utils.utils import instantiate_from_config
sys.path.insert(0, "scripts/evaluation")
from funcs import (
batch_ddim_sampling,
load_model_checkpoint,
get_latent_z,
save_videos
)
def download_model():
REPO_ID = 'Doubiiu/DynamiCrafter'
filename_list = ['model.ckpt']
if not os.path.exists('./checkpoints/dynamicrafter_256_v1/'):
os.makedirs('./checkpoints/dynamicrafter_256_v1/')
for filename in filename_list:
local_file = os.path.join('./checkpoints/dynamicrafter_256_v1/', filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_256_v1/', force_download=True)
def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
download_model()
ckpt_path='checkpoints/dynamicrafter_256_v1/model.ckpt'
config_file='configs/inference_256_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
model = model.cuda()
save_fps = 8
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(256),
])
torch.cuda.empty_cache()
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
start = time.time()
if steps > 60:
steps = 60
batch_size=1
channels = model.model.diffusion_model.out_channels
frames = model.temporal_length
h, w = 256 // 8, 256 // 8
noise_shape = [batch_size, channels, frames, h, w]
# text cond
text_emb = model.get_learned_conditioning([prompt])
# img cond
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
img_tensor = (img_tensor / 255. - 0.5) * 2
image_tensor_resized = transform(img_tensor) #3,256,256
videos = image_tensor_resized.unsqueeze(0) # bchw
z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
## inference
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
## b,samples,c,t,h,w
video_path = './output.mp4'
save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
model = model.cpu()
return video_path
i2v_examples = [
['prompts/art.png', 'man fishing in a boat at sunset', 50, 7.5, 1.0, 3, 234],
['prompts/boy.png', 'boy walking on the street', 50, 7.5, 1.0, 3, 125],
['prompts/dance1.jpeg', 'two people dancing', 50, 7.5, 1.0, 3, 116],
['prompts/fire_and_beach.jpg', 'a campfire on the beach and the ocean waves in the background', 50, 7.5, 1.0, 3, 111],
['prompts/girl3.jpeg', 'girl talking and blinking', 50, 7.5, 1.0, 3, 111],
['prompts/guitar0.jpeg', 'bear playing guitar happily, snowing', 50, 7.5, 1.0, 3, 122],
['prompts/surf.png', 'a man is surfing', 50, 7.5, 1.0, 3, 123],
]
css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
gr.Markdown("<div align='center'> <h1> DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors </span> </h1> \
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
<a href='https://doubiiu.github.io/'>Jinbo Xing</a>, \
<a href='https://menghanxia.github.io/'>Menghan Xia</a>, <a href='https://yzhang2016.github.io/'>Yong Zhang</a>, \
<a href=''>Haoxin Chen</a>, <a href=''> Wangbo Yu</a>,\
<a href='https://github.com/hyliu'>Hanyuan Liu</a>, <a href='https://xinntao.github.io/'>Xintao Wang</a>,\
<a href='https://www.cse.cuhk.edu.hk/~ttwong/myself.html'>Tien-Tsin Wong</a>,\
<a href='https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=zh-CN'>Ying Shan</a>\
</h2> \
<a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2310.12190'> [ArXiv] </a>\
<a style='font-size:18px;color: #000000' href='https://doubiiu.github.io/projects/DynamiCrafter/'> [Project Page] </a> \
<a style='font-size:18px;color: #000000' href='https://github.com/Doubiiu/DynamiCrafter'> [Github] </a> </div>")
with gr.Tab(label='ImageAnimation'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
with gr.Row():
i2v_input_text = gr.Text(label='Prompts')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
i2v_motion = gr.Slider(minimum=1, maximum=4, step=1, elem_id="i2v_motion", label="Motion magnitude", value=3)
i2v_end_btn = gr.Button("Generate")
# with gr.Tab(label='Result'):
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples,
inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
outputs=[i2v_output_video],
fn = infer,
)
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
outputs=[i2v_output_video],
fn = infer
)
dynamicrafter_iface.queue(max_size=12).launch(show_api=True)