|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Conversion script for the LoRA's safetensors checkpoints. """ |
|
|
|
import argparse |
|
|
|
import torch |
|
from safetensors.torch import load_file |
|
|
|
from diffusers import StableDiffusionPipeline |
|
|
|
|
|
def convert_motion_lora_ckpt_to_diffusers(pipeline, state_dict, alpha=1.0): |
|
|
|
for key in state_dict: |
|
|
|
if "up." in key: continue |
|
|
|
up_key = key.replace(".down.", ".up.") |
|
model_key = key.replace("processor.", "").replace("_lora", "").replace("down.", "").replace("up.", "") |
|
model_key = model_key.replace("to_out.", "to_out.0.") |
|
layer_infos = model_key.split(".")[:-1] |
|
|
|
curr_layer = pipeline.unet |
|
while len(layer_infos) > 0: |
|
temp_name = layer_infos.pop(0) |
|
curr_layer = curr_layer.__getattr__(temp_name) |
|
|
|
weight_down = state_dict[key] |
|
weight_up = state_dict[up_key] |
|
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device) |
|
|
|
return pipeline |
|
|
|
|
|
|
|
def convert_lora(pipeline, state_dict, LORA_PREFIX_UNET="lora_unet", LORA_PREFIX_TEXT_ENCODER="lora_te", alpha=0.6): |
|
|
|
|
|
|
|
|
|
|
|
|
|
visited = [] |
|
|
|
|
|
for key in state_dict: |
|
|
|
|
|
|
|
|
|
if ".alpha" in key or key in visited: |
|
continue |
|
|
|
if "text" in key: |
|
layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_") |
|
curr_layer = pipeline.text_encoder |
|
else: |
|
layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_") |
|
curr_layer = pipeline.unet |
|
|
|
|
|
temp_name = layer_infos.pop(0) |
|
while len(layer_infos) > -1: |
|
try: |
|
curr_layer = curr_layer.__getattr__(temp_name) |
|
if len(layer_infos) > 0: |
|
temp_name = layer_infos.pop(0) |
|
elif len(layer_infos) == 0: |
|
break |
|
except Exception: |
|
if len(temp_name) > 0: |
|
temp_name += "_" + layer_infos.pop(0) |
|
else: |
|
temp_name = layer_infos.pop(0) |
|
|
|
pair_keys = [] |
|
if "lora_down" in key: |
|
pair_keys.append(key.replace("lora_down", "lora_up")) |
|
pair_keys.append(key) |
|
else: |
|
pair_keys.append(key) |
|
pair_keys.append(key.replace("lora_up", "lora_down")) |
|
|
|
|
|
if len(state_dict[pair_keys[0]].shape) == 4: |
|
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32) |
|
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32) |
|
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3).to(curr_layer.weight.data.device) |
|
else: |
|
weight_up = state_dict[pair_keys[0]].to(torch.float32) |
|
weight_down = state_dict[pair_keys[1]].to(torch.float32) |
|
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).to(curr_layer.weight.data.device) |
|
|
|
|
|
for item in pair_keys: |
|
visited.append(item) |
|
|
|
return pipeline |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." |
|
) |
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
parser.add_argument( |
|
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" |
|
) |
|
parser.add_argument( |
|
"--lora_prefix_text_encoder", |
|
default="lora_te", |
|
type=str, |
|
help="The prefix of text encoder weight in safetensors", |
|
) |
|
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") |
|
parser.add_argument( |
|
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." |
|
) |
|
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") |
|
|
|
args = parser.parse_args() |
|
|
|
base_model_path = args.base_model_path |
|
checkpoint_path = args.checkpoint_path |
|
dump_path = args.dump_path |
|
lora_prefix_unet = args.lora_prefix_unet |
|
lora_prefix_text_encoder = args.lora_prefix_text_encoder |
|
alpha = args.alpha |
|
|
|
pipe = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) |
|
|
|
pipe = pipe.to(args.device) |
|
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) |
|
|