Spaces:
Running
on
A10G
Running
on
A10G
import spaces | |
import gradio as gr | |
# import gradio.helpers | |
import torch | |
import os | |
from glob import glob | |
from pathlib import Path | |
from typing import Optional | |
from PIL import Image | |
from diffusers.utils import load_image, export_to_video | |
from pipeline import StableVideoDiffusionPipeline | |
import random | |
from safetensors import safe_open | |
from lcm_scheduler import AnimateLCMSVDStochasticIterativeScheduler | |
def get_safetensors_files(): | |
models_dir = "./safetensors" | |
safetensors_files = [ | |
f for f in os.listdir(models_dir) if f.endswith(".safetensors") | |
] | |
return safetensors_files | |
def model_select(selected_file): | |
print("load model weights", selected_file) | |
pipe.unet.cpu() | |
file_path = os.path.join("./safetensors", selected_file) | |
state_dict = {} | |
with safe_open(file_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
missing, unexpected = pipe.unet.load_state_dict(state_dict, strict=True) | |
pipe.unet.cuda() | |
del state_dict | |
return | |
noise_scheduler = AnimateLCMSVDStochasticIterativeScheduler( | |
num_train_timesteps=40, | |
sigma_min=0.002, | |
sigma_max=700.0, | |
sigma_data=1.0, | |
s_noise=1.0, | |
rho=7, | |
clip_denoised=False, | |
) | |
pipe = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid-xt", | |
scheduler=noise_scheduler, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
) | |
pipe.to("cuda") | |
pipe.enable_model_cpu_offload() # for smaller cost | |
model_select("AnimateLCM-SVD-xt-1.1.safetensors") | |
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # for faster inference | |
max_64_bit_int = 2**63 - 1 | |
def sample( | |
image: Image, | |
seed: Optional[int] = 42, | |
randomize_seed: bool = False, | |
motion_bucket_id: int = 80, | |
fps_id: int = 8, | |
max_guidance_scale: float = 1.2, | |
min_guidance_scale: float = 1, | |
width: int = 1024, | |
height: int = 576, | |
num_inference_steps: int = 4, | |
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
output_folder: str = "outputs_gradio", | |
): | |
if image.mode == "RGBA": | |
image = image.convert("RGB") | |
if randomize_seed: | |
seed = random.randint(0, max_64_bit_int) | |
generator = torch.manual_seed(seed) | |
os.makedirs(output_folder, exist_ok=True) | |
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
with torch.autocast("cuda"): | |
frames = pipe( | |
image, | |
decode_chunk_size=decoding_t, | |
generator=generator, | |
motion_bucket_id=motion_bucket_id, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
min_guidance_scale=min_guidance_scale, | |
max_guidance_scale=max_guidance_scale, | |
).frames[0] | |
export_to_video(frames, video_path, fps=fps_id) | |
torch.manual_seed(seed) | |
return video_path, seed | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Upload your image", type="pil") | |
generate_btn = gr.Button("Generate") | |
video = gr.Video() | |
seed = gr.Slider( | |
label="Seed", | |
value=42, | |
randomize=False, | |
minimum=0, | |
maximum=max_64_bit_int, | |
step=1, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
motion_bucket_id = gr.Slider( | |
label="Motion bucket id", | |
info="Controls how much motion to add/remove from the image", | |
value=80, | |
minimum=1, | |
maximum=255, | |
) | |
fps_id = gr.Slider( | |
label="Frames per second", | |
info="The length of your video in seconds will be 25/fps", | |
value=8, | |
minimum=5, | |
maximum=30, | |
) | |
# note: we want something that is close to 16:9 (1.7777) | |
# 576 / 320 = 1.8 | |
# 448 / 256 = 1.75 | |
width = gr.Slider( | |
label="Width of input image", | |
info="It should be divisible by 64", | |
value=576, # 256, 320, 384, 448 | |
minimum=256, | |
maximum=2048, | |
step=64, | |
) | |
height = gr.Slider( | |
label="Height of input image", | |
info="It should be divisible by 64", | |
value=320, # 256, 320, 384, 448 | |
minimum=256, | |
maximum=1152, | |
) | |
max_guidance_scale = gr.Slider( | |
label="Max guidance scale", | |
info="classifier-free guidance strength", | |
value=1.2, | |
minimum=1, | |
maximum=2, | |
) | |
min_guidance_scale = gr.Slider( | |
label="Min guidance scale", | |
info="classifier-free guidance strength", | |
value=1, | |
minimum=1, | |
maximum=1.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Num inference steps", | |
info="steps for inference", | |
value=4, | |
minimum=1, | |
maximum=20, | |
step=1, | |
) | |
generate_btn.click( | |
fn=sample, | |
inputs=[ | |
image, | |
seed, | |
randomize_seed, | |
motion_bucket_id, | |
fps_id, | |
max_guidance_scale, | |
min_guidance_scale, | |
width, | |
height, | |
num_inference_steps, | |
], | |
outputs=[video, seed], | |
api_name="video", | |
) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch(show_error=True) | |