Spaces:
Sleeping
Sleeping
import gradio as gr | |
# import gradio.helpers | |
import torch | |
import os | |
from glob import glob | |
from pathlib import Path | |
from typing import Optional | |
import tempfile | |
import numpy as np | |
import cv2 | |
import subprocess | |
from DeepCache import DeepCacheSDHelper | |
from PIL import Image | |
from diffusers.utils import load_image, export_to_video | |
from pipeline import StableVideoDiffusionPipeline | |
import random | |
from safetensors import safe_open | |
from lcm_scheduler import AnimateLCMSVDStochasticIterativeScheduler | |
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret') | |
# is that 8 or 25? | |
hardcoded_fps = 25 | |
hardcoded_duration_sec = 3 | |
def get_safetensors_files(): | |
models_dir = "./safetensors" | |
safetensors_files = [ | |
f for f in os.listdir(models_dir) if f.endswith(".safetensors") | |
] | |
return safetensors_files | |
def model_select(selected_file): | |
print("load model weights", selected_file) | |
pipe.unet.cpu() | |
file_path = os.path.join("./safetensors", selected_file) | |
state_dict = {} | |
with safe_open(file_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
state_dict[key] = f.get_tensor(key) | |
missing, unexpected = pipe.unet.load_state_dict(state_dict, strict=True) | |
pipe.unet.cuda() | |
del state_dict | |
return | |
# ----------------------------- FRAME INTERPOLATION --------------------------------- | |
# we cannot afford to use AI-based algorithms such as FILM or ST-MFNet, | |
# those are way too slow for AiTube which needs things to be as fast as possible | |
# ----------------------------------------------------------------------------------- | |
def interpolate_video_frames( | |
input_file_path, | |
output_file_path, | |
output_fps=hardcoded_fps, | |
desired_duration=hardcoded_duration_sec, | |
original_duration=hardcoded_duration_sec, | |
output_width=None, | |
output_height=None, | |
use_cuda=False, # this requires FFmpeg to have been compiled with CUDA support (to try - I'm not sure the Hugging Face image has that by default) | |
verbose=False): | |
scale_factor = desired_duration / original_duration | |
filters = [] | |
# Scaling if dimensions are provided | |
# note: upscaling produces disastrous results, | |
# it will double the compute time | |
# I think that's either because we are not hardware-accelerated, | |
# or because of the interpolation done after it, which thus become more computationally intensive | |
if output_width and output_height: | |
filters.append(f'scale={output_width}:{output_height}') | |
# note: from all fact, it looks like using a small macroblock is important for us, | |
# since the video resolution is very small (usually 512x288px) | |
interpolation_filter = f'minterpolate=mi_mode=mci:mc_mode=obmc:me=hexbs:vsbmc=1:mb_size=4:fps={output_fps}:scd=none,setpts={scale_factor}*PTS' | |
#- `mi_mode=mci`: Specifies motion compensated interpolation. | |
#- `mc_mode=obmc`: Overlapped block motion compensation is used. | |
#- `me=hexbs`: Hexagon-based search (motion estimation method). | |
#- `vsbmc=1`: Variable-size block motion compensation is enabled. | |
#- `mb_size=4`: Sets the macroblock size. | |
#- `fps={output_fps}`: Defines the output frame rate. | |
#- `scd=none`: Disables scene change detection entirely. | |
#- `setpts={scale_factor}*PTS`: Adjusts for the stretching of the video duration. | |
# Frame interpolation setup | |
filters.append(interpolation_filter) | |
# Combine all filters into a single filter complex | |
filter_complex = ','.join(filters) | |
cmd = [ | |
'ffmpeg', | |
'-i', input_file_path, | |
] | |
# not supported by the current image, we will have to build it | |
if use_cuda: | |
cmd.extend(['-hwaccel', 'cuda', '-hwaccel_output_format', 'cuda']) | |
cmd.extend([ | |
'-filter:v', filter_complex, | |
'-r', str(output_fps), | |
output_file_path | |
]) | |
# Adjust the log level based on the verbosity input | |
if not verbose: | |
cmd.insert(1, '-loglevel') | |
cmd.insert(2, 'error') | |
# Logging for debugging if verbose | |
if verbose: | |
print("output_fps:", output_fps) | |
print("desired_duration:", desired_duration) | |
print("original_duration:", original_duration) | |
print("cmd:", cmd) | |
try: | |
subprocess.run(cmd, check=True) | |
return output_file_path | |
except subprocess.CalledProcessError as e: | |
print("Failed to interpolate video. Error:", e) | |
return input_file_path # In case of error, return original path | |
# ----------------------------------- VIDEO ENCODING --------------------------------- | |
# The Diffusers utils hardcode MP4V as a codec which is not supported by all browsers. | |
# This is a critical issue for AiTube so we are forced to implement our own routine. | |
# ------------------------------------------------------------------------------------ | |
def export_to_video_file(video_frames, output_video_path=None, fps=hardcoded_fps): | |
if output_video_path is None: | |
output_video_path = tempfile.NamedTemporaryFile(suffix=".webm").name | |
if isinstance(video_frames[0], np.ndarray): | |
video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames] | |
elif isinstance(video_frames[0], Image.Image): | |
video_frames = [np.array(frame) for frame in video_frames] | |
# Use VP9 codec - don't freak out: yes, this will throw an exception, but this still works | |
# https://stackoverflow.com/a/61116338 | |
# I suspect there is a bug somewhere and the actual hex code should be different | |
fourcc = cv2.VideoWriter_fourcc(*'VP90') | |
h, w, c = video_frames[0].shape | |
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps, (w, h), True) | |
for frame in video_frames: | |
# Ensure the video frame is in the correct color format | |
img = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | |
video_writer.write(img) | |
video_writer.release() | |
return output_video_path | |
noise_scheduler = AnimateLCMSVDStochasticIterativeScheduler( | |
num_train_timesteps=40, | |
sigma_min=0.002, | |
sigma_max=700.0, | |
sigma_data=1.0, | |
s_noise=1.0, | |
rho=7, | |
clip_denoised=False, | |
) | |
pipe = StableVideoDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid-xt", | |
scheduler=noise_scheduler, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
) | |
pipe.to("cuda") | |
pipe.enable_model_cpu_offload() # for smaller cost | |
model_select("AnimateLCM-SVD-xt-1.1.safetensors") | |
# pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) # for faster inference | |
max_64_bit_int = 2**63 - 1 | |
def sample( | |
image: Image, | |
seed: Optional[int] = 42, | |
randomize_seed: bool = False, | |
motion_bucket_id: int = 80, | |
fps_id: int = 8, | |
max_guidance_scale: float = 1.2, | |
min_guidance_scale: float = 1, | |
width: int = 1024, | |
height: int = 576, | |
num_inference_steps: int = 4, | |
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary. | |
output_folder: str = "outputs_gradio", | |
): | |
if image.mode == "RGBA": | |
image = image.convert("RGB") | |
if randomize_seed: | |
seed = random.randint(0, max_64_bit_int) | |
generator = torch.manual_seed(seed) | |
os.makedirs(output_folder, exist_ok=True) | |
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
with torch.autocast("cuda"): | |
frames = pipe( | |
image, | |
decode_chunk_size=decoding_t, | |
generator=generator, | |
motion_bucket_id=motion_bucket_id, | |
height=height, | |
width=width, | |
num_inference_steps=num_inference_steps, | |
min_guidance_scale=min_guidance_scale, | |
max_guidance_scale=max_guidance_scale, | |
).frames[0] | |
export_to_video(frames, video_path, fps=fps_id) | |
torch.manual_seed(seed) | |
return video_path, seed | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
image = gr.Image(label="Upload your image", type="pil") | |
generate_btn = gr.Button("Generate") | |
video = gr.Video() | |
seed = gr.Slider( | |
label="Seed", | |
value=42, | |
randomize=False, | |
minimum=0, | |
maximum=max_64_bit_int, | |
step=1, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) | |
motion_bucket_id = gr.Slider( | |
label="Motion bucket id", | |
info="Controls how much motion to add/remove from the image", | |
value=80, | |
minimum=1, | |
maximum=255, | |
) | |
fps_id = gr.Slider( | |
label="Frames per second", | |
info="The length of your video in seconds will be 25/fps", | |
value=8, | |
minimum=5, | |
maximum=30, | |
) | |
# note: we want something that is close to 16:9 (1.7777) | |
# 576 / 320 = 1.8 | |
# 448 / 256 = 1.75 | |
width = gr.Slider( | |
label="Width of input image", | |
info="It should be divisible by 64", | |
value=576, # 256, 320, 384, 448 | |
minimum=256, | |
maximum=2048, | |
step=64, | |
) | |
height = gr.Slider( | |
label="Height of input image", | |
info="It should be divisible by 64", | |
value=320, # 256, 320, 384, 448 | |
minimum=256, | |
maximum=1152, | |
) | |
max_guidance_scale = gr.Slider( | |
label="Max guidance scale", | |
info="classifier-free guidance strength", | |
value=1.2, | |
minimum=1, | |
maximum=2, | |
) | |
min_guidance_scale = gr.Slider( | |
label="Min guidance scale", | |
info="classifier-free guidance strength", | |
value=1, | |
minimum=1, | |
maximum=1.5, | |
) | |
num_inference_steps = gr.Slider( | |
label="Num inference steps", | |
info="steps for inference", | |
value=4, | |
minimum=1, | |
maximum=20, | |
step=1, | |
) | |
generate_btn.click( | |
fn=sample, | |
inputs=[ | |
image, | |
seed, | |
randomize_seed, | |
motion_bucket_id, | |
fps_id, | |
max_guidance_scale, | |
min_guidance_scale, | |
width, | |
height, | |
num_inference_steps, | |
], | |
outputs=[video, seed], | |
api_name="video", | |
) | |
if __name__ == "__main__": | |
demo.queue() | |
demo.launch(show_error=True) | |