|
import gradio as gr |
|
import torch |
|
import os |
|
import spaces |
|
import uuid |
|
|
|
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler |
|
from diffusers.utils import export_to_video |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
from PIL import Image |
|
|
|
|
|
base = "frankjoshua/toonyou_beta6" |
|
repo = "ByteDance/AnimateDiff-Lightning" |
|
checkpoints = { |
|
"1-Step" : ["animatediff_lightning_1step_diffusers.safetensors", 1], |
|
"2-Step" : ["animatediff_lightning_2step_diffusers.safetensors", 2], |
|
"4-Step" : ["animatediff_lightning_4step_diffusers.safetensors", 4], |
|
"8-Step" : ["animatediff_lightning_8step_diffusers.safetensors", 8], |
|
} |
|
loaded = None |
|
|
|
|
|
if torch.cuda.is_available(): |
|
device = "cuda" |
|
dtype = torch.float16 |
|
adapter = MotionAdapter().to(device, dtype) |
|
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device) |
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") |
|
else: |
|
raise NotImplementedError("No GPU detected!") |
|
|
|
|
|
@spaces.GPU(enable_queue=True) |
|
def generate_image(prompt, ckpt): |
|
global loaded |
|
print(prompt, ckpt) |
|
|
|
checkpoint = checkpoints[ckpt][0] |
|
num_inference_steps = checkpoints[ckpt][1] |
|
|
|
if loaded != num_inference_steps: |
|
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device=device), strict=False) |
|
loaded = num_inference_steps |
|
|
|
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=num_inference_steps) |
|
|
|
name = str(uuid.uuid4()).replace("-", "") |
|
path = f"/tmp/{name}.mp4" |
|
|
|
export_to_video(output.frames[0], path, fps=10) |
|
|
|
return path |
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
gr.HTML("<h1><center>AnimateDiff-Lightning ⚡</center></h1>") |
|
gr.HTML("<p><center>Lightning-fast text-to-video generation</center></p><p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>") |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8) |
|
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True) |
|
submit = gr.Button(scale=1, variant='primary') |
|
video = gr.Video(label='AnimateDiff-Lightning Generated Image') |
|
|
|
prompt.submit( |
|
fn=generate_image, |
|
inputs=[prompt, ckpt], |
|
outputs=video, |
|
) |
|
submit.click( |
|
fn=generate_image, |
|
inputs=[prompt, ckpt], |
|
outputs=video, |
|
) |
|
|
|
demo.queue().launch() |