Update
Browse files
app.py
CHANGED
@@ -11,53 +11,66 @@ from safetensors.torch import load_file
|
|
11 |
from PIL import Image
|
12 |
|
13 |
# Constants
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
18 |
-
if torch.cuda.is_available():
|
19 |
-
device = "cuda"
|
20 |
-
dtype = torch.float16
|
21 |
-
adapter = MotionAdapter().to(device, dtype)
|
22 |
-
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device)
|
23 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
24 |
-
else:
|
25 |
raise NotImplementedError("No GPU detected!")
|
26 |
|
|
|
|
|
|
|
|
|
|
|
27 |
# Function
|
28 |
@spaces.GPU(enable_queue=True)
|
29 |
-
def generate_image(prompt, step):
|
30 |
global loaded
|
31 |
print(prompt, step)
|
32 |
|
33 |
-
if
|
34 |
repo = "ByteDance/AnimateDiff-Lightning"
|
35 |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
36 |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step)
|
40 |
-
|
41 |
name = str(uuid.uuid4()).replace("-", "")
|
42 |
path = f"/tmp/{name}.mp4"
|
43 |
export_to_video(output.frames[0], path, fps=10)
|
44 |
return path
|
45 |
|
46 |
|
47 |
-
|
48 |
# Gradio Interface
|
49 |
-
|
50 |
with gr.Blocks(css="style.css") as demo:
|
51 |
gr.HTML("<h1><center>AnimateDiff-Lightning ⚡</center></h1>")
|
52 |
gr.HTML("<p><center>Lightning-fast text-to-video generation</center></p><p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>")
|
53 |
with gr.Group():
|
54 |
with gr.Row():
|
55 |
prompt = gr.Textbox(
|
56 |
-
label='
|
57 |
scale=8
|
58 |
)
|
59 |
-
|
60 |
-
label='
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
choices=[
|
62 |
('1-Step', 1),
|
63 |
('2-Step', 2),
|
@@ -77,12 +90,12 @@ with gr.Blocks(css="style.css") as demo:
|
|
77 |
|
78 |
prompt.submit(
|
79 |
fn=generate_image,
|
80 |
-
inputs=[prompt,
|
81 |
outputs=video,
|
82 |
)
|
83 |
submit.click(
|
84 |
fn=generate_image,
|
85 |
-
inputs=[prompt,
|
86 |
outputs=video,
|
87 |
)
|
88 |
|
|
|
11 |
from PIL import Image
|
12 |
|
13 |
# Constants
|
14 |
+
bases = {
|
15 |
+
"ToonYou": "frankjoshua/toonyou_beta6",
|
16 |
+
"epiCRealism": "emilianJR/epiCRealism"
|
17 |
+
}
|
18 |
+
step_loaded = None
|
19 |
+
base_loaded = "ToonYou"
|
20 |
|
21 |
# Ensure model and scheduler are initialized in GPU-enabled function
|
22 |
+
if not torch.cuda.is_available():
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
raise NotImplementedError("No GPU detected!")
|
24 |
|
25 |
+
device = "cuda"
|
26 |
+
dtype = torch.float16
|
27 |
+
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
|
28 |
+
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
29 |
+
|
30 |
# Function
|
31 |
@spaces.GPU(enable_queue=True)
|
32 |
+
def generate_image(prompt, base, step):
|
33 |
global loaded
|
34 |
print(prompt, step)
|
35 |
|
36 |
+
if step_loaded != step:
|
37 |
repo = "ByteDance/AnimateDiff-Lightning"
|
38 |
ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors"
|
39 |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False)
|
40 |
+
step_loaded = step
|
41 |
+
|
42 |
+
if base_loaded != base:
|
43 |
+
pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False)
|
44 |
+
base_loaded = base
|
45 |
|
46 |
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step)
|
|
|
47 |
name = str(uuid.uuid4()).replace("-", "")
|
48 |
path = f"/tmp/{name}.mp4"
|
49 |
export_to_video(output.frames[0], path, fps=10)
|
50 |
return path
|
51 |
|
52 |
|
|
|
53 |
# Gradio Interface
|
|
|
54 |
with gr.Blocks(css="style.css") as demo:
|
55 |
gr.HTML("<h1><center>AnimateDiff-Lightning ⚡</center></h1>")
|
56 |
gr.HTML("<p><center>Lightning-fast text-to-video generation</center></p><p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>")
|
57 |
with gr.Group():
|
58 |
with gr.Row():
|
59 |
prompt = gr.Textbox(
|
60 |
+
label='Prompt (English)',
|
61 |
scale=8
|
62 |
)
|
63 |
+
select_base = gr.Dropdown(
|
64 |
+
label='Base model',
|
65 |
+
choices=[
|
66 |
+
"ToonYou",
|
67 |
+
"epiCRealism",
|
68 |
+
],
|
69 |
+
value=base_loaded,
|
70 |
+
interactive=True
|
71 |
+
)
|
72 |
+
select_step = gr.Dropdown(
|
73 |
+
label='Inference steps',
|
74 |
choices=[
|
75 |
('1-Step', 1),
|
76 |
('2-Step', 2),
|
|
|
90 |
|
91 |
prompt.submit(
|
92 |
fn=generate_image,
|
93 |
+
inputs=[prompt, select_base, select_step],
|
94 |
outputs=video,
|
95 |
)
|
96 |
submit.click(
|
97 |
fn=generate_image,
|
98 |
+
inputs=[prompt, select_base, select_step],
|
99 |
outputs=video,
|
100 |
)
|
101 |
|