Commit
•
7e1bff8
1
Parent(s):
3f9fd43
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import base64
|
|
5 |
import uuid
|
6 |
|
7 |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
|
8 |
-
from diffusers.utils import export_to_video
|
9 |
from huggingface_hub import hf_hub_download
|
10 |
from safetensors.torch import load_file
|
11 |
from PIL import Image
|
@@ -30,6 +29,32 @@ dtype = torch.float16
|
|
30 |
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
|
31 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def generate_image(secret_token, prompt, base, width, height, motion, step):
|
34 |
if secret_token != SECRET_TOKEN:
|
35 |
raise gr.Error(
|
@@ -69,18 +94,18 @@ def generate_image(secret_token, prompt, base, width, height, motion, step):
|
|
69 |
)
|
70 |
|
71 |
name = str(uuid.uuid4()).replace("-", "")
|
72 |
-
path = f"/tmp/{name}.
|
73 |
|
74 |
-
# I think we are looking time here too, converting to
|
75 |
# the frames unencoded to the frontend renderer
|
76 |
-
|
77 |
|
78 |
# Read the content of the video file and encode it to base64
|
79 |
with open(path, "rb") as video_file:
|
80 |
video_base64 = base64.b64encode(video_file.read()).decode('utf-8')
|
81 |
|
82 |
# Prepend the appropriate data URI header with MIME type
|
83 |
-
video_data_uri = 'data:video/
|
84 |
|
85 |
# clean-up (otherwise there is always a risk of "ghosting", eg. someone seeing the previous generated video",
|
86 |
# of one of the steps go wrong)
|
@@ -94,8 +119,8 @@ with gr.Blocks() as demo:
|
|
94 |
gr.HTML("""
|
95 |
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
|
96 |
<div style="text-align: center; color: black;">
|
97 |
-
<p style="color: black;">This space is a
|
98 |
-
<p style="color: black;">
|
99 |
</div>
|
100 |
</div>""")
|
101 |
|
|
|
5 |
import uuid
|
6 |
|
7 |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from safetensors.torch import load_file
|
10 |
from PIL import Image
|
|
|
29 |
pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device)
|
30 |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear")
|
31 |
|
32 |
+
import tempfile
|
33 |
+
import numpy as np
|
34 |
+
import cv2
|
35 |
+
|
36 |
+
def export_to_video_file(video_frames, output_video_path=None, fps=10):
|
37 |
+
if output_video_path is None:
|
38 |
+
output_video_path = tempfile.NamedTemporaryFile(suffix=".webm").name
|
39 |
+
|
40 |
+
if isinstance(video_frames[0], np.ndarray):
|
41 |
+
video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]
|
42 |
+
elif isinstance(video_frames[0], Image.Image):
|
43 |
+
video_frames = [np.array(frame) for frame in video_frames]
|
44 |
+
|
45 |
+
# Use VP8 codec
|
46 |
+
fourcc = cv2.VideoWriter_fourcc(*'VP80')
|
47 |
+
h, w, c = video_frames[0].shape
|
48 |
+
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps, (w, h), True)
|
49 |
+
|
50 |
+
for frame in video_frames:
|
51 |
+
# Ensure the video frame is in the correct color format
|
52 |
+
img = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
53 |
+
video_writer.write(img)
|
54 |
+
video_writer.release()
|
55 |
+
|
56 |
+
return output_video_path
|
57 |
+
|
58 |
def generate_image(secret_token, prompt, base, width, height, motion, step):
|
59 |
if secret_token != SECRET_TOKEN:
|
60 |
raise gr.Error(
|
|
|
94 |
)
|
95 |
|
96 |
name = str(uuid.uuid4()).replace("-", "")
|
97 |
+
path = f"/tmp/{name}.webm"
|
98 |
|
99 |
+
# I think we are looking time here too, converting to webm is too slow, we should return
|
100 |
# the frames unencoded to the frontend renderer
|
101 |
+
export_to_video_file(output.frames[0], path, fps=10)
|
102 |
|
103 |
# Read the content of the video file and encode it to base64
|
104 |
with open(path, "rb") as video_file:
|
105 |
video_base64 = base64.b64encode(video_file.read()).decode('utf-8')
|
106 |
|
107 |
# Prepend the appropriate data URI header with MIME type
|
108 |
+
video_data_uri = 'data:video/webm;base64,' + video_base64
|
109 |
|
110 |
# clean-up (otherwise there is always a risk of "ghosting", eg. someone seeing the previous generated video",
|
111 |
# of one of the steps go wrong)
|
|
|
119 |
gr.HTML("""
|
120 |
<div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
|
121 |
<div style="text-align: center; color: black;">
|
122 |
+
<p style="color: black;">This space is a headless component of the cloud rendering engine used by AiTube.</p>
|
123 |
+
<p style="color: black;">It is not available for public use, but you can use the <a href="https://huggingface.co/spaces/ByteDance/AnimateDiff-Lightning" target="_blank">original space</a>.</p>
|
124 |
</div>
|
125 |
</div>""")
|
126 |
|