Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
"use server" | |
import { HfInference, HfInferenceEndpoint } from "@huggingface/inference" | |
import { LLMEngine, LLMPredictionFunctionParams } from "@/types" | |
import { createZephyrPrompt } from "@/lib/createZephyrPrompt" | |
export async function predict({ | |
systemPrompt, | |
userPrompt, | |
nbMaxNewTokens, | |
// llmVendorConfig // <-- arbitrary/custom LLM models hosted on HF is not supported yet using the UI | |
}: LLMPredictionFunctionParams): Promise<string> { | |
const hf = new HfInference(process.env.AUTH_HF_API_TOKEN) | |
const llmEngine = `${process.env.LLM_ENGINE || ""}` as LLMEngine | |
const inferenceEndpoint = `${process.env.LLM_HF_INFERENCE_ENDPOINT_URL || ""}` | |
const inferenceModel = `${process.env.LLM_HF_INFERENCE_API_MODEL || ""}` | |
let hfie: HfInferenceEndpoint = hf | |
switch (llmEngine) { | |
case "INFERENCE_ENDPOINT": | |
if (inferenceEndpoint) { | |
// console.log("Using a custom HF Inference Endpoint") | |
hfie = hf.endpoint(inferenceEndpoint) | |
} else { | |
const error = "No Inference Endpoint URL defined" | |
console.error(error) | |
throw new Error(error) | |
} | |
break; | |
case "INFERENCE_API": | |
if (inferenceModel) { | |
// console.log("Using an HF Inference API Model") | |
} else { | |
const error = "No Inference API model defined" | |
console.error(error) | |
throw new Error(error) | |
} | |
break; | |
default: | |
const error = "Please check your Hugging Face Inference API or Inference Endpoint settings" | |
console.error(error) | |
throw new Error(error) | |
} | |
const api = llmEngine === "INFERENCE_ENDPOINT" ? hfie : hf | |
let instructions = "" | |
try { | |
for await (const output of api.textGenerationStream({ | |
model: llmEngine === "INFERENCE_ENDPOINT" ? undefined : (inferenceModel || undefined), | |
inputs: createZephyrPrompt([ | |
{ role: "system", content: systemPrompt }, | |
{ role: "user", content: userPrompt } | |
]) + "\n[{", // <-- important: we force its hand | |
parameters: { | |
do_sample: true, | |
max_new_tokens: nbMaxNewTokens, | |
return_full_text: false, | |
} | |
})) { | |
instructions += output.token.text | |
// process.stdout.write(output.token.text) | |
if ( | |
instructions.includes("</s>") || | |
instructions.includes("<s>") || | |
instructions.includes("/s>") || | |
instructions.includes("[INST]") || | |
instructions.includes("[/INST]") || | |
instructions.includes("<SYS>") || | |
instructions.includes("<<SYS>>") || | |
instructions.includes("</SYS>") || | |
instructions.includes("<</SYS>>") || | |
instructions.includes("<|user|>") || | |
instructions.includes("<|end|>") || | |
instructions.includes("<|system|>") || | |
instructions.includes("<|assistant|>") | |
) { | |
break | |
} | |
} | |
} catch (err) { | |
// console.error(`error during generation: ${err}`) | |
// a common issue with Llama-2 might be that the model receives too many requests | |
if (`${err}` === "Error: Model is overloaded") { | |
instructions = `` | |
} | |
} | |
// need to do some cleanup of the garbage the LLM might have gave us | |
return ( | |
instructions | |
.replaceAll("<|end|>", "") | |
.replaceAll("<s>", "") | |
.replaceAll("</s>", "") | |
.replaceAll("/s>", "") | |
.replaceAll("[INST]", "") | |
.replaceAll("[/INST]", "") | |
.replaceAll("<SYS>", "") | |
.replaceAll("<<SYS>>", "") | |
.replaceAll("</SYS>", "") | |
.replaceAll("<</SYS>>", "") | |
.replaceAll("<|system|>", "") | |
.replaceAll("<|user|>", "") | |
.replaceAll("<|all|>", "") | |
.replaceAll("<|assistant|>", "") | |
.replaceAll('""', '"') | |
) | |
} | |