Spaces:
Running
Running
| import os | |
| import sys | |
| import json | |
| import time | |
| import shutil | |
| import gradio as gr | |
| from pathlib import Path | |
| from datetime import datetime | |
| import subprocess | |
| import signal | |
| import psutil | |
| import tempfile | |
| import zipfile | |
| import logging | |
| import traceback | |
| import threading | |
| import select | |
| from typing import Any, Optional, Dict, List, Union, Tuple | |
| from huggingface_hub import upload_folder, create_repo | |
| from ..config import ( | |
| TrainingConfig, TRAINING_PRESETS, LOG_FILE_PATH, TRAINING_VIDEOS_PATH, | |
| STORAGE_PATH, TRAINING_PATH, MODEL_PATH, OUTPUT_PATH, HF_API_TOKEN, | |
| MODEL_TYPES, TRAINING_TYPES, | |
| DEFAULT_NB_TRAINING_STEPS, DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
| DEFAULT_BATCH_SIZE, DEFAULT_CAPTION_DROPOUT_P, | |
| DEFAULT_LEARNING_RATE, | |
| DEFAULT_LORA_RANK, DEFAULT_LORA_ALPHA, | |
| DEFAULT_LORA_RANK_STR, DEFAULT_LORA_ALPHA_STR, | |
| DEFAULT_SEED, DEFAULT_RESHAPE_MODE, | |
| DEFAULT_REMOVE_COMMON_LLM_CAPTION_PREFIXES, | |
| DEFAULT_DATASET_TYPE, DEFAULT_PROMPT_PREFIX, | |
| DEFAULT_MIXED_PRECISION, DEFAULT_TRAINING_TYPE, | |
| DEFAULT_NUM_GPUS, | |
| DEFAULT_MAX_GPUS, | |
| DEFAULT_PRECOMPUTATION_ITEMS, | |
| DEFAULT_NB_TRAINING_STEPS, | |
| DEFAULT_NB_LR_WARMUP_STEPS | |
| ) | |
| from ..utils import ( | |
| get_available_gpu_count, | |
| make_archive, | |
| parse_training_log, | |
| is_image_file, | |
| is_video_file, | |
| prepare_finetrainers_dataset, | |
| copy_files_to_training_dir | |
| ) | |
| logger = logging.getLogger(__name__) | |
| class TrainingService: | |
| def __init__(self, app=None): | |
| # Store reference to app | |
| self.app = app | |
| # State and log files | |
| self.session_file = OUTPUT_PATH / "session.json" | |
| self.status_file = OUTPUT_PATH / "status.json" | |
| self.pid_file = OUTPUT_PATH / "training.pid" | |
| self.log_file = OUTPUT_PATH / "training.log" | |
| self.file_handler = None | |
| self.setup_logging() | |
| self.ensure_valid_ui_state_file() | |
| logger.info("Training service initialized") | |
| def setup_logging(self): | |
| """Set up logging with proper handler management""" | |
| global logger | |
| logger = logging.getLogger(__name__) | |
| logger.setLevel(logging.INFO) | |
| # Remove any existing handlers to avoid duplicates | |
| logger.handlers.clear() | |
| # Add stdout handler | |
| stdout_handler = logging.StreamHandler(sys.stdout) | |
| stdout_handler.setFormatter(logging.Formatter( | |
| '%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
| )) | |
| logger.addHandler(stdout_handler) | |
| # Add file handler if log file is accessible | |
| try: | |
| # Close existing file handler if it exists | |
| if self.file_handler: | |
| self.file_handler.close() | |
| logger.removeHandler(self.file_handler) | |
| self.file_handler = logging.FileHandler(str(LOG_FILE_PATH)) | |
| self.file_handler.setFormatter(logging.Formatter( | |
| '%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
| )) | |
| logger.addHandler(self.file_handler) | |
| except Exception as e: | |
| logger.warning(f"Could not set up log file: {e}") | |
| def clear_logs(self) -> None: | |
| """Clear log file with proper handler cleanup""" | |
| try: | |
| # Remove and close the file handler | |
| if self.file_handler: | |
| logger.removeHandler(self.file_handler) | |
| self.file_handler.close() | |
| self.file_handler = None | |
| # Delete the file if it exists | |
| if LOG_FILE_PATH.exists(): | |
| LOG_FILE_PATH.unlink() | |
| # Recreate logging setup | |
| self.setup_logging() | |
| self.append_log("Log file cleared and recreated") | |
| except Exception as e: | |
| logger.error(f"Error clearing logs: {e}") | |
| raise | |
| def __del__(self): | |
| """Cleanup when the service is destroyed""" | |
| if self.file_handler: | |
| self.file_handler.close() | |
| def save_ui_state(self, values: Dict[str, Any]) -> None: | |
| """Save current UI state to file with validation""" | |
| ui_state_file = OUTPUT_PATH / "ui_state.json" | |
| # Validate values before saving | |
| validated_values = {} | |
| default_state = { | |
| "model_type": list(MODEL_TYPES.keys())[0], | |
| "training_type": list(TRAINING_TYPES.keys())[0], | |
| "lora_rank": DEFAULT_LORA_RANK_STR, | |
| "lora_alpha": DEFAULT_LORA_ALPHA_STR, | |
| "train_steps": DEFAULT_NB_TRAINING_STEPS, | |
| "batch_size": DEFAULT_BATCH_SIZE, | |
| "learning_rate": DEFAULT_LEARNING_RATE, | |
| "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
| "training_preset": list(TRAINING_PRESETS.keys())[0], | |
| "num_gpus": DEFAULT_NUM_GPUS, | |
| "precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
| "lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS | |
| } | |
| # Copy default values first | |
| validated_values = default_state.copy() | |
| # Update with provided values, converting types as needed | |
| for key, value in values.items(): | |
| if key in default_state: | |
| if key == "train_steps": | |
| try: | |
| validated_values[key] = int(value) | |
| except (ValueError, TypeError): | |
| validated_values[key] = default_state[key] | |
| elif key == "batch_size": | |
| try: | |
| validated_values[key] = int(value) | |
| except (ValueError, TypeError): | |
| validated_values[key] = default_state[key] | |
| elif key == "learning_rate": | |
| try: | |
| validated_values[key] = float(value) | |
| except (ValueError, TypeError): | |
| validated_values[key] = default_state[key] | |
| elif key == "save_iterations": | |
| try: | |
| validated_values[key] = int(value) | |
| except (ValueError, TypeError): | |
| validated_values[key] = default_state[key] | |
| elif key == "lora_rank" and value not in ["16", "32", "64", "128", "256", "512", "1024"]: | |
| validated_values[key] = default_state[key] | |
| elif key == "lora_alpha" and value not in ["16", "32", "64", "128", "256", "512", "1024"]: | |
| validated_values[key] = default_state[key] | |
| else: | |
| validated_values[key] = value | |
| try: | |
| # First verify we can serialize to JSON | |
| json_data = json.dumps(validated_values, indent=2) | |
| # Write to the file | |
| with open(ui_state_file, 'w') as f: | |
| f.write(json_data) | |
| logger.debug(f"UI state saved successfully") | |
| except Exception as e: | |
| logger.error(f"Error saving UI state: {str(e)}") | |
| def _backup_and_recreate_ui_state(self, ui_state_file, default_state): | |
| """Backup the corrupted UI state file and create a new one with defaults""" | |
| try: | |
| # Create a backup with timestamp | |
| timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
| backup_file = ui_state_file.with_suffix(f'.json.bak_{timestamp}') | |
| # Copy the corrupted file | |
| shutil.copy2(ui_state_file, backup_file) | |
| logger.info(f"Backed up corrupted UI state file to {backup_file}") | |
| except Exception as backup_error: | |
| logger.error(f"Failed to backup corrupted UI state file: {str(backup_error)}") | |
| # Create a new file with default values | |
| self.save_ui_state(default_state) | |
| logger.info("Created new UI state file with default values after error") | |
| def load_ui_state(self) -> Dict[str, Any]: | |
| """Load saved UI state with robust error handling""" | |
| ui_state_file = OUTPUT_PATH / "ui_state.json" | |
| default_state = { | |
| "model_type": list(MODEL_TYPES.keys())[0], | |
| "training_type": list(TRAINING_TYPES.keys())[0], | |
| "lora_rank": DEFAULT_LORA_RANK_STR, | |
| "lora_alpha": DEFAULT_LORA_ALPHA_STR, | |
| "train_steps": DEFAULT_NB_TRAINING_STEPS, | |
| "batch_size": DEFAULT_BATCH_SIZE, | |
| "learning_rate": DEFAULT_LEARNING_RATE, | |
| "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
| "training_preset": list(TRAINING_PRESETS.keys())[0], | |
| "num_gpus": DEFAULT_NUM_GPUS, | |
| "precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
| "lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS | |
| } | |
| if not ui_state_file.exists(): | |
| logger.info("UI state file does not exist, using default values") | |
| return default_state | |
| try: | |
| # First check if the file is empty | |
| file_size = ui_state_file.stat().st_size | |
| if file_size == 0: | |
| logger.warning("UI state file exists but is empty, using default values") | |
| return default_state | |
| with open(ui_state_file, 'r') as f: | |
| file_content = f.read().strip() | |
| if not file_content: | |
| logger.warning("UI state file is empty or contains only whitespace, using default values") | |
| return default_state | |
| try: | |
| saved_state = json.loads(file_content) | |
| except json.JSONDecodeError as e: | |
| logger.error(f"Error parsing UI state JSON: {str(e)}") | |
| # Instead of showing the error, recreate the file with defaults | |
| self._backup_and_recreate_ui_state(ui_state_file, default_state) | |
| return default_state | |
| # Clean up model type if it contains " (LoRA)" suffix | |
| if "model_type" in saved_state and " (LoRA)" in saved_state["model_type"]: | |
| saved_state["model_type"] = saved_state["model_type"].replace(" (LoRA)", "") | |
| logger.info(f"Removed (LoRA) suffix from saved model type: {saved_state['model_type']}") | |
| # Convert numeric values to appropriate types | |
| if "train_steps" in saved_state: | |
| try: | |
| saved_state["train_steps"] = int(saved_state["train_steps"]) | |
| except (ValueError, TypeError): | |
| saved_state["train_steps"] = default_state["train_steps"] | |
| logger.warning("Invalid train_steps value, using default") | |
| if "batch_size" in saved_state: | |
| try: | |
| saved_state["batch_size"] = int(saved_state["batch_size"]) | |
| except (ValueError, TypeError): | |
| saved_state["batch_size"] = default_state["batch_size"] | |
| logger.warning("Invalid batch_size value, using default") | |
| if "learning_rate" in saved_state: | |
| try: | |
| saved_state["learning_rate"] = float(saved_state["learning_rate"]) | |
| except (ValueError, TypeError): | |
| saved_state["learning_rate"] = default_state["learning_rate"] | |
| logger.warning("Invalid learning_rate value, using default") | |
| if "save_iterations" in saved_state: | |
| try: | |
| saved_state["save_iterations"] = int(saved_state["save_iterations"]) | |
| except (ValueError, TypeError): | |
| saved_state["save_iterations"] = default_state["save_iterations"] | |
| logger.warning("Invalid save_iterations value, using default") | |
| # Make sure we have all keys (in case structure changed) | |
| merged_state = default_state.copy() | |
| merged_state.update({k: v for k, v in saved_state.items() if v is not None}) | |
| # Validate model_type is in available choices | |
| if merged_state["model_type"] not in MODEL_TYPES: | |
| # Try to map from internal name | |
| model_found = False | |
| for display_name, internal_name in MODEL_TYPES.items(): | |
| if internal_name == merged_state["model_type"]: | |
| merged_state["model_type"] = display_name | |
| model_found = True | |
| break | |
| # If still not found, use default | |
| if not model_found: | |
| merged_state["model_type"] = default_state["model_type"] | |
| logger.warning(f"Invalid model type in saved state, using default") | |
| # Validate training_type is in available choices | |
| if merged_state["training_type"] not in TRAINING_TYPES: | |
| # Try to map from internal name | |
| training_found = False | |
| for display_name, internal_name in TRAINING_TYPES.items(): | |
| if internal_name == merged_state["training_type"]: | |
| merged_state["training_type"] = display_name | |
| training_found = True | |
| break | |
| # If still not found, use default | |
| if not training_found: | |
| merged_state["training_type"] = default_state["training_type"] | |
| logger.warning(f"Invalid training type in saved state, using default") | |
| # Validate training_preset is in available choices | |
| if merged_state["training_preset"] not in TRAINING_PRESETS: | |
| merged_state["training_preset"] = default_state["training_preset"] | |
| logger.warning(f"Invalid training preset in saved state, using default") | |
| # Validate lora_rank is in allowed values | |
| if merged_state.get("lora_rank") not in ["16", "32", "64", "128", "256", "512", "1024"]: | |
| merged_state["lora_rank"] = default_state["lora_rank"] | |
| logger.warning(f"Invalid lora_rank in saved state, using default") | |
| # Validate lora_alpha is in allowed values | |
| if merged_state.get("lora_alpha") not in ["16", "32", "64", "128", "256", "512", "1024"]: | |
| merged_state["lora_alpha"] = default_state["lora_alpha"] | |
| logger.warning(f"Invalid lora_alpha in saved state, using default") | |
| return merged_state | |
| except Exception as e: | |
| logger.error(f"Error loading UI state: {str(e)}") | |
| # If anything goes wrong, backup and recreate | |
| self._backup_and_recreate_ui_state(ui_state_file, default_state) | |
| return default_state | |
| def ensure_valid_ui_state_file(self): | |
| """Ensure UI state file exists and is valid JSON""" | |
| ui_state_file = OUTPUT_PATH / "ui_state.json" | |
| # Default state with all required values | |
| default_state = { | |
| "model_type": list(MODEL_TYPES.keys())[0], | |
| "training_type": list(TRAINING_TYPES.keys())[0], | |
| "lora_rank": DEFAULT_LORA_RANK_STR, | |
| "lora_alpha": DEFAULT_LORA_ALPHA_STR, | |
| "train_steps": DEFAULT_NB_TRAINING_STEPS, | |
| "batch_size": DEFAULT_BATCH_SIZE, | |
| "learning_rate": DEFAULT_LEARNING_RATE, | |
| "save_iterations": DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS, | |
| "training_preset": list(TRAINING_PRESETS.keys())[0], | |
| "num_gpus": DEFAULT_NUM_GPUS, | |
| "precomputation_items": DEFAULT_PRECOMPUTATION_ITEMS, | |
| "lr_warmup_steps": DEFAULT_NB_LR_WARMUP_STEPS | |
| } | |
| # If file doesn't exist, create it with default values | |
| if not ui_state_file.exists(): | |
| logger.info("Creating new UI state file with default values") | |
| self.save_ui_state(default_state) | |
| return | |
| # Check if file is valid JSON | |
| try: | |
| # First check if the file is empty | |
| file_size = ui_state_file.stat().st_size | |
| if file_size == 0: | |
| logger.warning("UI state file exists but is empty, recreating with default values") | |
| self.save_ui_state(default_state) | |
| return | |
| with open(ui_state_file, 'r') as f: | |
| file_content = f.read().strip() | |
| if not file_content: | |
| logger.warning("UI state file is empty or contains only whitespace, recreating with default values") | |
| self.save_ui_state(default_state) | |
| return | |
| # Try to parse the JSON content | |
| try: | |
| saved_state = json.loads(file_content) | |
| logger.debug("UI state file validation successful") | |
| except json.JSONDecodeError as e: | |
| # JSON parsing failed, backup and recreate | |
| logger.error(f"Error parsing UI state JSON: {str(e)}") | |
| self._backup_and_recreate_ui_state(ui_state_file, default_state) | |
| return | |
| except Exception as e: | |
| # Any other error (file access, etc) | |
| logger.error(f"Error checking UI state file: {str(e)}") | |
| self._backup_and_recreate_ui_state(ui_state_file, default_state) | |
| return | |
| # Modify save_session to also store the UI state at training start | |
| def save_session(self, params: Dict) -> None: | |
| """Save training session parameters""" | |
| session_data = { | |
| "timestamp": datetime.now().isoformat(), | |
| "params": params, | |
| "status": self.get_status(), | |
| # Add UI state at the time training started | |
| "initial_ui_state": self.load_ui_state() | |
| } | |
| with open(self.session_file, 'w') as f: | |
| json.dump(session_data, f, indent=2) | |
| def load_session(self) -> Optional[Dict]: | |
| """Load saved training session""" | |
| if self.session_file.exists(): | |
| try: | |
| with open(self.session_file, 'r') as f: | |
| return json.load(f) | |
| except json.JSONDecodeError: | |
| return None | |
| return None | |
| def get_status(self) -> Dict: | |
| """Get current training status""" | |
| default_status = {'status': 'stopped', 'message': 'No training in progress'} | |
| if not self.status_file.exists(): | |
| return default_status | |
| try: | |
| with open(self.status_file, 'r') as f: | |
| status = json.load(f) | |
| # Check if process is actually running | |
| if self.pid_file.exists(): | |
| with open(self.pid_file, 'r') as f: | |
| pid = int(f.read().strip()) | |
| if not psutil.pid_exists(pid): | |
| # Process died unexpectedly | |
| if status['status'] == 'training': | |
| # Only log this once by checking if we've already updated the status | |
| if not hasattr(self, '_process_terminated_logged') or not self._process_terminated_logged: | |
| self.append_log("Training process terminated unexpectedly") | |
| self._process_terminated_logged = True | |
| status['status'] = 'error' | |
| status['message'] = 'Training process terminated unexpectedly' | |
| # Update the status file to avoid repeated logging | |
| with open(self.status_file, 'w') as f: | |
| json.dump(status, f, indent=2) | |
| else: | |
| status['status'] = 'stopped' | |
| status['message'] = 'Training process not found' | |
| return status | |
| except (json.JSONDecodeError, ValueError): | |
| return default_status | |
| def get_logs(self, max_lines: int = 100) -> str: | |
| """Get training logs with line limit""" | |
| if self.log_file.exists(): | |
| with open(self.log_file, 'r') as f: | |
| lines = f.readlines() | |
| return ''.join(lines[-max_lines:]) | |
| return "" | |
| def append_log(self, message: str) -> None: | |
| """Append message to log file and logger""" | |
| timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
| with open(self.log_file, 'a') as f: | |
| f.write(f"[{timestamp}] {message}\n") | |
| logger.info(message) | |
| def clear_logs(self) -> None: | |
| """Clear log file""" | |
| if self.log_file.exists(): | |
| self.log_file.unlink() | |
| self.append_log("Log file cleared") | |
| def validate_training_config(self, config: TrainingConfig, model_type: str) -> Optional[str]: | |
| """Validate training configuration""" | |
| logger.info(f"Validating config for {model_type}") | |
| try: | |
| # Basic validation | |
| if not config.output_dir: | |
| return "Output directory not specified" | |
| # For the dataset_config validation, we now expect it to be a JSON file | |
| dataset_config_path = Path(config.data_root) | |
| if not dataset_config_path.exists(): | |
| return f"Dataset config file does not exist: {dataset_config_path}" | |
| # Check the JSON file is valid | |
| try: | |
| with open(dataset_config_path, 'r') as f: | |
| dataset_json = json.load(f) | |
| # Basic validation of the JSON structure | |
| if "datasets" not in dataset_json or not isinstance(dataset_json["datasets"], list) or len(dataset_json["datasets"]) == 0: | |
| return "Invalid dataset config JSON: missing or empty 'datasets' array" | |
| except json.JSONDecodeError: | |
| return f"Invalid JSON in dataset config file: {dataset_config_path}" | |
| except Exception as e: | |
| return f"Error reading dataset config file: {str(e)}" | |
| # Check training videos directory exists | |
| if not TRAINING_VIDEOS_PATH.exists(): | |
| return f"Training videos directory does not exist: {TRAINING_VIDEOS_PATH}" | |
| # Validate file counts | |
| video_count = len(list(TRAINING_VIDEOS_PATH.glob('*.mp4'))) | |
| if video_count == 0: | |
| return "No training files found" | |
| # Model-specific validation | |
| if model_type == "hunyuan_video": | |
| if config.batch_size > 2: | |
| return "Hunyuan model recommended batch size is 1-2" | |
| if not config.gradient_checkpointing: | |
| return "Gradient checkpointing is required for Hunyuan model" | |
| elif model_type == "ltx_video": | |
| if config.batch_size > 4: | |
| return "LTX model recommended batch size is 1-4" | |
| elif model_type == "wan": | |
| if config.batch_size > 4: | |
| return "Wan model recommended batch size is 1-4" | |
| logger.info(f"Config validation passed with {video_count} training files") | |
| return None | |
| except Exception as e: | |
| logger.error(f"Error during config validation: {str(e)}") | |
| return f"Configuration validation failed: {str(e)}" | |
| def start_training( | |
| self, | |
| model_type: str, | |
| lora_rank: str, | |
| lora_alpha: str, | |
| train_steps: int, | |
| batch_size: int, | |
| learning_rate: float, | |
| save_iterations: int, | |
| repo_id: str, | |
| preset_name: str, | |
| training_type: str = DEFAULT_TRAINING_TYPE, | |
| resume_from_checkpoint: Optional[str] = None, | |
| num_gpus: int = DEFAULT_NUM_GPUS, | |
| precomputation_items: int = DEFAULT_PRECOMPUTATION_ITEMS, | |
| lr_warmup_steps: int = DEFAULT_NB_LR_WARMUP_STEPS, | |
| progress: Optional[gr.Progress] = None, | |
| ) -> Tuple[str, str]: | |
| """Start training with finetrainers""" | |
| self.clear_logs() | |
| if not model_type: | |
| raise ValueError("model_type cannot be empty") | |
| if model_type not in MODEL_TYPES.values(): | |
| raise ValueError(f"Invalid model_type: {model_type}. Must be one of {list(MODEL_TYPES.values())}") | |
| if training_type not in TRAINING_TYPES.values(): | |
| raise ValueError(f"Invalid training_type: {training_type}. Must be one of {list(TRAINING_TYPES.values())}") | |
| # Check if we're resuming or starting new | |
| is_resuming = resume_from_checkpoint is not None | |
| log_prefix = "Resuming" if is_resuming else "Initializing" | |
| logger.info(f"{log_prefix} training with model_type={model_type}, training_type={training_type}") | |
| # Update progress if available | |
| #if progress: | |
| # progress(0.15, desc="Setting up training configuration") | |
| try: | |
| # Get absolute paths - FIXED to look in project root instead of within vms directory | |
| current_dir = Path(__file__).parent.parent.parent.absolute() # Go up to project root | |
| train_script = current_dir / "train.py" | |
| if not train_script.exists(): | |
| # Try alternative locations | |
| alt_locations = [ | |
| current_dir.parent / "train.py", # One level up from project root | |
| Path("/home/user/app/train.py"), # Absolute path | |
| Path("train.py") # Current working directory | |
| ] | |
| for alt_path in alt_locations: | |
| if alt_path.exists(): | |
| train_script = alt_path | |
| logger.info(f"Found train.py at alternative location: {train_script}") | |
| break | |
| if not train_script.exists(): | |
| error_msg = f"Training script not found at {train_script} or any alternative locations" | |
| logger.error(error_msg) | |
| return error_msg, "Training script not found" | |
| # Log paths for debugging | |
| logger.info("Current working directory: %s", current_dir) | |
| logger.info("Training script path: %s", train_script) | |
| logger.info("Training data path: %s", TRAINING_PATH) | |
| # Update progress | |
| #if progress: | |
| # progress(0.2, desc="Preparing training dataset") | |
| videos_file, prompts_file = prepare_finetrainers_dataset() | |
| if videos_file is None or prompts_file is None: | |
| error_msg = "Failed to generate training lists" | |
| logger.error(error_msg) | |
| return error_msg, "Training preparation failed" | |
| video_count = sum(1 for _ in open(videos_file)) | |
| logger.info(f"Generated training lists with {video_count} files") | |
| if video_count == 0: | |
| error_msg = "No training files found" | |
| logger.error(error_msg) | |
| return error_msg, "No training data available" | |
| # Update progress | |
| #if progress: | |
| # progress(0.25, desc="Creating dataset configuration") | |
| # Get preset configuration | |
| preset = TRAINING_PRESETS[preset_name] | |
| training_buckets = preset["training_buckets"] | |
| flow_weighting_scheme = preset.get("flow_weighting_scheme", "none") | |
| preset_training_type = preset.get("training_type", "lora") | |
| # Get the custom prompt prefix from the tabs | |
| custom_prompt_prefix = None | |
| if hasattr(self, 'app') and self.app is not None: | |
| if hasattr(self.app, 'tabs') and 'caption_tab' in self.app.tabs: | |
| if hasattr(self.app.tabs['caption_tab'], 'components') and 'custom_prompt_prefix' in self.app.tabs['caption_tab'].components: | |
| # Get the value and clean it | |
| prefix = self.app.tabs['caption_tab'].components['custom_prompt_prefix'].value | |
| if prefix: | |
| # Clean the prefix - remove trailing comma, space or comma+space | |
| custom_prompt_prefix = prefix.rstrip(', ') | |
| # Create a proper dataset configuration JSON file | |
| dataset_config_file = OUTPUT_PATH / "dataset_config.json" | |
| # Determine appropriate ID token based on model type and custom prefix | |
| id_token = custom_prompt_prefix # Use custom prefix as the primary id_token | |
| # Only use default ID tokens if no custom prefix is provided | |
| if not id_token: | |
| id_token = DEFAULT_PROMPT_PREFIX | |
| dataset_config = { | |
| "datasets": [ | |
| { | |
| "data_root": str(TRAINING_PATH), | |
| "dataset_type": DEFAULT_DATASET_TYPE, | |
| "id_token": id_token, | |
| "video_resolution_buckets": [[f, h, w] for f, h, w in training_buckets], | |
| "reshape_mode": DEFAULT_RESHAPE_MODE, | |
| "remove_common_llm_caption_prefixes": DEFAULT_REMOVE_COMMON_LLM_CAPTION_PREFIXES, | |
| } | |
| ] | |
| } | |
| # Write the dataset config to file | |
| with open(dataset_config_file, 'w') as f: | |
| json.dump(dataset_config, f, indent=2) | |
| logger.info(f"Created dataset configuration file at {dataset_config_file}") | |
| # Get config for selected model type with preset buckets | |
| if model_type == "hunyuan_video": | |
| if training_type == "lora": | |
| config = TrainingConfig.hunyuan_video_lora( | |
| data_path=str(TRAINING_PATH), | |
| output_path=str(OUTPUT_PATH), | |
| buckets=training_buckets | |
| ) | |
| else: | |
| # Hunyuan doesn't support full finetune in our UI yet | |
| error_msg = "Full finetune is not supported for Hunyuan Video due to memory limitations" | |
| logger.error(error_msg) | |
| return error_msg, "Training configuration error" | |
| elif model_type == "ltx_video": | |
| if training_type == "lora": | |
| config = TrainingConfig.ltx_video_lora( | |
| data_path=str(TRAINING_PATH), | |
| output_path=str(OUTPUT_PATH), | |
| buckets=training_buckets | |
| ) | |
| else: | |
| config = TrainingConfig.ltx_video_full_finetune( | |
| data_path=str(TRAINING_PATH), | |
| output_path=str(OUTPUT_PATH), | |
| buckets=training_buckets | |
| ) | |
| elif model_type == "wan": | |
| if training_type == "lora": | |
| config = TrainingConfig.wan_lora( | |
| data_path=str(TRAINING_PATH), | |
| output_path=str(OUTPUT_PATH), | |
| buckets=training_buckets | |
| ) | |
| else: | |
| error_msg = "Full finetune for Wan is not yet supported in this UI" | |
| logger.error(error_msg) | |
| return error_msg, "Training configuration error" | |
| else: | |
| error_msg = f"Unsupported model type: {model_type}" | |
| logger.error(error_msg) | |
| return error_msg, "Unsupported model" | |
| # Create validation dataset if needed | |
| validation_file = None | |
| #if enable_validation: # Add a parameter to control this | |
| # validation_file = create_validation_config() | |
| # if validation_file: | |
| # config_args.extend([ | |
| # "--validation_dataset_file", str(validation_file), | |
| # "--validation_steps", "500" # Set this to a suitable value | |
| # ]) | |
| # Update with UI parameters | |
| config.train_steps = int(train_steps) | |
| config.batch_size = int(batch_size) | |
| config.lr = float(learning_rate) | |
| config.checkpointing_steps = int(save_iterations) | |
| config.training_type = training_type | |
| config.flow_weighting_scheme = flow_weighting_scheme | |
| config.lr_warmup_steps = int(lr_warmup_steps) | |
| # Update the NUM_GPUS variable and CUDA_VISIBLE_DEVICES | |
| num_gpus = min(num_gpus, get_available_gpu_count()) | |
| if num_gpus <= 0: | |
| num_gpus = 1 | |
| # Generate CUDA_VISIBLE_DEVICES string | |
| visible_devices = ",".join([str(i) for i in range(num_gpus)]) | |
| config.data_root = str(dataset_config_file) | |
| # Update LoRA parameters if using LoRA training type | |
| if training_type == "lora": | |
| config.lora_rank = int(lora_rank) | |
| config.lora_alpha = int(lora_alpha) | |
| # Update with resume_from_checkpoint if provided | |
| if resume_from_checkpoint: | |
| config.resume_from_checkpoint = resume_from_checkpoint | |
| self.append_log(f"Resuming from checkpoint: {resume_from_checkpoint}") | |
| # Common settings for both models | |
| config.mixed_precision = DEFAULT_MIXED_PRECISION | |
| config.seed = DEFAULT_SEED | |
| config.gradient_checkpointing = True | |
| config.enable_slicing = True | |
| config.enable_tiling = True | |
| config.caption_dropout_p = DEFAULT_CAPTION_DROPOUT_P | |
| config.precomputation_items = precomputation_items | |
| validation_error = self.validate_training_config(config, model_type) | |
| if validation_error: | |
| error_msg = f"Configuration validation failed: {validation_error}" | |
| logger.error(error_msg) | |
| return "Error: Invalid configuration", error_msg | |
| # Convert config to command line arguments for all launcher types | |
| config_args = config.to_args_list() | |
| logger.debug("Generated args list: %s", config_args) | |
| # Use different launch commands based on model type | |
| # For Wan models, use torchrun instead of accelerate launch | |
| if model_type == "wan": | |
| # Configure torchrun parameters | |
| torchrun_args = [ | |
| "torchrun", | |
| "--standalone", | |
| "--nproc_per_node=" + str(num_gpus), | |
| "--nnodes=1", | |
| "--rdzv_backend=c10d", | |
| "--rdzv_endpoint=localhost:0", | |
| str(train_script) | |
| ] | |
| # Additional args needed for torchrun | |
| config_args.extend([ | |
| "--parallel_backend", "ptd", | |
| "--pp_degree", "1", | |
| "--dp_degree", "1", | |
| "--dp_shards", "1", | |
| "--cp_degree", "1", | |
| "--tp_degree", "1" | |
| ]) | |
| # Log the full command for debugging | |
| command_str = ' '.join(torchrun_args + config_args) | |
| self.append_log(f"Command: {command_str}") | |
| logger.info(f"Executing command: {command_str}") | |
| launch_args = torchrun_args | |
| else: | |
| # For other models, use accelerate launch as before | |
| # Determine the appropriate accelerate config file based on num_gpus | |
| accelerate_config = None | |
| if num_gpus == 1: | |
| accelerate_config = "accelerate_configs/uncompiled_1.yaml" | |
| elif num_gpus == 2: | |
| accelerate_config = "accelerate_configs/uncompiled_2.yaml" | |
| elif num_gpus == 4: | |
| accelerate_config = "accelerate_configs/uncompiled_4.yaml" | |
| elif num_gpus == 8: | |
| accelerate_config = "accelerate_configs/uncompiled_8.yaml" | |
| else: | |
| # Default to 1 GPU config if no matching config is found | |
| accelerate_config = "accelerate_configs/uncompiled_1.yaml" | |
| num_gpus = 1 | |
| visible_devices = "0" | |
| # Configure accelerate parameters | |
| accelerate_args = [ | |
| "accelerate", "launch", | |
| "--config_file", accelerate_config, | |
| "--gpu_ids", visible_devices, | |
| "--mixed_precision=bf16", | |
| "--num_processes=" + str(num_gpus), | |
| "--num_machines=1", | |
| "--dynamo_backend=no", | |
| str(train_script) | |
| ] | |
| # Log the full command for debugging | |
| command_str = ' '.join(accelerate_args + config_args) | |
| self.append_log(f"Command: {command_str}") | |
| logger.info(f"Executing command: {command_str}") | |
| launch_args = accelerate_args | |
| # Set environment variables | |
| env = os.environ.copy() | |
| env["NCCL_P2P_DISABLE"] = "1" | |
| env["TORCH_NCCL_ENABLE_MONITORING"] = "0" | |
| env["WANDB_MODE"] = "offline" | |
| env["HF_API_TOKEN"] = HF_API_TOKEN | |
| env["FINETRAINERS_LOG_LEVEL"] = "DEBUG" # Added for better debugging | |
| env["CUDA_VISIBLE_DEVICES"] = visible_devices | |
| #if progress: | |
| # progress(0.9, desc="Launching training process") | |
| # Start the training process | |
| process = subprocess.Popen( | |
| launch_args + config_args, | |
| stdout=subprocess.PIPE, | |
| stderr=subprocess.PIPE, | |
| start_new_session=True, | |
| env=env, | |
| cwd=str(current_dir), | |
| bufsize=1, | |
| universal_newlines=True | |
| ) | |
| logger.info(f"Started process with PID: {process.pid}") | |
| with open(self.pid_file, 'w') as f: | |
| f.write(str(process.pid)) | |
| # Save session info including repo_id for later hub upload | |
| self.save_session({ | |
| "model_type": model_type, | |
| "training_type": training_type, | |
| "lora_rank": lora_rank, | |
| "lora_alpha": lora_alpha, | |
| "train_steps": train_steps, | |
| "batch_size": batch_size, | |
| "learning_rate": learning_rate, | |
| "save_iterations": save_iterations, | |
| "num_gpus": num_gpus, | |
| "precomputation_items": precomputation_items, | |
| "lr_warmup_steps": lr_warmup_steps, | |
| "repo_id": repo_id, | |
| "start_time": datetime.now().isoformat() | |
| }) | |
| # Update initial training status | |
| total_steps = int(train_steps) | |
| self.save_status( | |
| state='training', | |
| step=0, | |
| total_steps=total_steps, | |
| loss=0.0, | |
| message='Training started', | |
| repo_id=repo_id, | |
| model_type=model_type, | |
| training_type=training_type | |
| ) | |
| # Start monitoring process output | |
| self._start_log_monitor(process) | |
| success_msg = f"Started {training_type} training for {model_type} model" | |
| self.append_log(success_msg) | |
| logger.info(success_msg) | |
| # Final progress update - now we'll track it through the log monitor | |
| #if progress: | |
| # progress(1.0, desc="Training started successfully") | |
| return success_msg, self.get_logs() | |
| except Exception as e: | |
| error_msg = f"Error {'resuming' if is_resuming else 'starting'} training: {str(e)}" | |
| self.append_log(error_msg) | |
| logger.exception("Training startup failed") | |
| traceback.print_exc() | |
| return f"Error {'resuming' if is_resuming else 'starting'} training", error_msg | |
| def stop_training(self) -> Tuple[str, str]: | |
| """Stop training process""" | |
| if not self.pid_file.exists(): | |
| return "No training process found", self.get_logs() | |
| try: | |
| with open(self.pid_file, 'r') as f: | |
| pid = int(f.read().strip()) | |
| if psutil.pid_exists(pid): | |
| os.killpg(os.getpgid(pid), signal.SIGTERM) | |
| if self.pid_file.exists(): | |
| self.pid_file.unlink() | |
| self.append_log("Training process stopped") | |
| self.save_status(state='stopped', message='Training stopped') | |
| return "Training stopped successfully", self.get_logs() | |
| except Exception as e: | |
| error_msg = f"Error stopping training: {str(e)}" | |
| self.append_log(error_msg) | |
| if self.pid_file.exists(): | |
| self.pid_file.unlink() | |
| return "Error stopping training", error_msg | |
| def pause_training(self) -> Tuple[str, str]: | |
| """Pause training process by sending SIGUSR1""" | |
| if not self.is_training_running(): | |
| return "No training process found", self.get_logs() | |
| try: | |
| with open(self.pid_file, 'r') as f: | |
| pid = int(f.read().strip()) | |
| if psutil.pid_exists(pid): | |
| os.kill(pid, signal.SIGUSR1) # Signal to pause | |
| self.save_status(state='paused', message='Training paused') | |
| self.append_log("Training paused") | |
| return "Training paused", self.get_logs() | |
| except Exception as e: | |
| error_msg = f"Error pausing training: {str(e)}" | |
| self.append_log(error_msg) | |
| return "Error pausing training", error_msg | |
| def resume_training(self) -> Tuple[str, str]: | |
| """Resume training process by sending SIGUSR2""" | |
| if not self.is_training_running(): | |
| return "No training process found", self.get_logs() | |
| try: | |
| with open(self.pid_file, 'r') as f: | |
| pid = int(f.read().strip()) | |
| if psutil.pid_exists(pid): | |
| os.kill(pid, signal.SIGUSR2) # Signal to resume | |
| self.save_status(state='training', message='Training resumed') | |
| self.append_log("Training resumed") | |
| return "Training resumed", self.get_logs() | |
| except Exception as e: | |
| error_msg = f"Error resuming training: {str(e)}" | |
| self.append_log(error_msg) | |
| return "Error resuming training", error_msg | |
| def is_training_running(self) -> bool: | |
| """Check if training is currently running""" | |
| if not self.pid_file.exists(): | |
| return False | |
| try: | |
| with open(self.pid_file, 'r') as f: | |
| pid = int(f.read().strip()) | |
| # Check if process exists AND is a Python process running train.py | |
| if psutil.pid_exists(pid): | |
| try: | |
| process = psutil.Process(pid) | |
| cmdline = process.cmdline() | |
| # Check if it's a Python process running train.py | |
| return any('train.py' in cmd for cmd in cmdline) | |
| except (psutil.NoSuchProcess, psutil.AccessDenied): | |
| return False | |
| return False | |
| except: | |
| return False | |
| def recover_interrupted_training(self) -> Dict[str, Any]: | |
| """Attempt to recover interrupted training | |
| Returns: | |
| Dict with recovery status and UI updates | |
| """ | |
| status = self.get_status() | |
| ui_updates = {} | |
| # Check for any checkpoints, even if status doesn't indicate training | |
| checkpoints = list(OUTPUT_PATH.glob("checkpoint-*")) | |
| has_checkpoints = len(checkpoints) > 0 | |
| # If status indicates training but process isn't running, or if we have checkpoints | |
| # and no active training process, try to recover | |
| if (status.get('status') in ['training', 'paused'] and not self.is_training_running()) or \ | |
| (has_checkpoints and not self.is_training_running()): | |
| logger.info("Detected interrupted training session or existing checkpoints, attempting to recover...") | |
| # Get the latest checkpoint | |
| last_session = self.load_session() | |
| if not last_session: | |
| logger.warning("No session data found for recovery, but will check for checkpoints") | |
| # Try to create a default session based on UI state if we have checkpoints | |
| if has_checkpoints: | |
| ui_state = self.load_ui_state() | |
| # Create a default session using UI state values | |
| last_session = { | |
| "params": { | |
| "model_type": MODEL_TYPES.get(ui_state.get("model_type", list(MODEL_TYPES.keys())[0])), | |
| "training_type": TRAINING_TYPES.get(ui_state.get("training_type", list(TRAINING_TYPES.keys())[0])), | |
| "lora_rank": ui_state.get("lora_rank", DEFAULT_LORA_RANK_STR), | |
| "lora_alpha": ui_state.get("lora_alpha", DEFAULT_LORA_ALPHA_STR), | |
| "train_steps": ui_state.get("train_steps", DEFAULT_NB_TRAINING_STEPS), | |
| "batch_size": ui_state.get("batch_size", DEFAULT_BATCH_SIZE), | |
| "learning_rate": ui_state.get("learning_rate", DEFAULT_LEARNING_RATE), | |
| "save_iterations": ui_state.get("save_iterations", DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS), | |
| "preset_name": ui_state.get("training_preset", list(TRAINING_PRESETS.keys())[0]), | |
| "repo_id": "" # Default empty repo ID | |
| } | |
| } | |
| logger.info("Created default session from UI state for recovery") | |
| else: | |
| # Set buttons for no active training | |
| ui_updates = { | |
| "start_btn": {"interactive": True, "variant": "primary", "value": "Start Training"}, | |
| "stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
| "delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}, | |
| "pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
| } | |
| return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates} | |
| # Find the latest checkpoint if we have checkpoints | |
| latest_checkpoint = None | |
| checkpoint_step = 0 | |
| if has_checkpoints: | |
| latest_checkpoint = max(checkpoints, key=os.path.getmtime) | |
| checkpoint_step = int(latest_checkpoint.name.split("-")[1]) | |
| logger.info(f"Found checkpoint at step {checkpoint_step}") | |
| else: | |
| logger.warning("No checkpoints found for recovery") | |
| # Set buttons for no active training | |
| ui_updates = { | |
| "start_btn": {"interactive": True, "variant": "primary", "value": "Start Training"}, | |
| "stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
| "delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}, | |
| "pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
| } | |
| return {"status": "error", "message": "No checkpoints found", "ui_updates": ui_updates} | |
| # Extract parameters from the saved session (not current UI state) | |
| # This ensures we use the original training parameters | |
| params = last_session.get('params', {}) | |
| # Map internal model type back to display name for UI | |
| model_type_internal = params.get('model_type') | |
| model_type_display = model_type_internal | |
| # Find the display name that maps to our internal model type | |
| for display_name, internal_name in MODEL_TYPES.items(): | |
| if internal_name == model_type_internal: | |
| model_type_display = display_name | |
| logger.info(f"Mapped internal model type '{model_type_internal}' to display name '{model_type_display}'") | |
| break | |
| # Get training type (default to LoRA if not present in saved session) | |
| training_type_internal = params.get('training_type', 'lora') | |
| training_type_display = next((disp for disp, val in TRAINING_TYPES.items() if val == training_type_internal), list(TRAINING_TYPES.keys())[0]) | |
| # Add UI updates to restore the training parameters in the UI | |
| # This shows the user what values are being used for the resumed training | |
| ui_updates.update({ | |
| "model_type": model_type_display, # Use the display name for the UI dropdown | |
| "training_type": training_type_display, # Use the display name for training type | |
| "lora_rank": params.get('lora_rank', DEFAULT_LORA_RANK_STR), | |
| "lora_alpha": params.get('lora_alpha', DEFAULT_LORA_ALPHA_STR), | |
| "train_steps": params.get('train_steps', DEFAULT_NB_TRAINING_STEPS), | |
| "batch_size": params.get('batch_size', DEFAULT_BATCH_SIZE), | |
| "learning_rate": params.get('learning_rate', DEFAULT_LEARNING_RATE), | |
| "save_iterations": params.get('save_iterations', DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS), | |
| "training_preset": params.get('preset_name', list(TRAINING_PRESETS.keys())[0]) | |
| }) | |
| # Check if we should auto-recover (immediate restart) | |
| auto_recover = True # Always auto-recover on startup | |
| if auto_recover: | |
| # Rest of the auto-recovery code remains unchanged | |
| try: | |
| # Use the internal model_type for the actual training | |
| # But keep model_type_display for the UI | |
| result = self.start_training( | |
| model_type=model_type_internal, | |
| lora_rank=params.get('lora_rank', DEFAULT_LORA_RANK_STR), | |
| lora_alpha=params.get('lora_alpha', DEFAULT_LORA_ALPHA_STR), | |
| train_size=params.get('train_steps', DEFAULT_NB_TRAINING_STEPS), | |
| batch_size=params.get('batch_size', DEFAULT_BATCH_SIZE), | |
| learning_rate=params.get('learning_rate', DEFAULT_LEARNING_RATE), | |
| save_iterations=params.get('save_iterations', DEFAULT_SAVE_CHECKPOINT_EVERY_N_STEPS), | |
| repo_id=params.get('repo_id', ''), | |
| preset_name=params.get('preset_name', list(TRAINING_PRESETS.keys())[0]), | |
| training_type=training_type_internal, | |
| resume_from_checkpoint=str(latest_checkpoint) | |
| ) | |
| # Set buttons for active training | |
| ui_updates.update({ | |
| "start_btn": {"interactive": False, "variant": "secondary", "value": "Continue Training"}, | |
| "stop_btn": {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"}, | |
| "delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"}, | |
| "pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
| }) | |
| return { | |
| "status": "recovered", | |
| "message": f"Training resumed from checkpoint {checkpoint_step}", | |
| "result": result, | |
| "ui_updates": ui_updates | |
| } | |
| except Exception as e: | |
| logger.error(f"Failed to auto-resume training: {str(e)}") | |
| # Set buttons for manual recovery | |
| ui_updates.update({ | |
| "start_btn": {"interactive": True, "variant": "primary", "value": "Continue Training"}, | |
| "stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
| "delete_checkpoints_btn": {"interactive": True, "variant": "stop", "value": "Delete All Checkpoints"}, | |
| "pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
| }) | |
| return {"status": "error", "message": f"Failed to auto-resume: {str(e)}", "ui_updates": ui_updates} | |
| else: | |
| # Set up UI for manual recovery | |
| ui_updates.update({ | |
| "start_btn": {"interactive": True, "variant": "primary", "value": "Continue Training"}, | |
| "stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
| "pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False} | |
| }) | |
| return {"status": "ready_to_recover", "message": f"Ready to resume from checkpoint {checkpoint_step}", "ui_updates": ui_updates} | |
| elif self.is_training_running(): | |
| # Process is still running, set buttons accordingly | |
| ui_updates = { | |
| "start_btn": {"interactive": False, "variant": "secondary", "value": "Continue Training" if has_checkpoints else "Start Training"}, | |
| "stop_btn": {"interactive": True, "variant": "primary", "value": "Stop at Last Checkpoint"}, | |
| "pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}, | |
| "delete_checkpoints_btn": {"interactive": False, "variant": "stop", "value": "Delete All Checkpoints"} | |
| } | |
| return {"status": "running", "message": "Training process is running", "ui_updates": ui_updates} | |
| else: | |
| # No training process, set buttons to default state | |
| button_text = "Continue Training" if has_checkpoints else "Start Training" | |
| ui_updates = { | |
| "start_btn": {"interactive": True, "variant": "primary", "value": button_text}, | |
| "stop_btn": {"interactive": False, "variant": "secondary", "value": "Stop at Last Checkpoint"}, | |
| "pause_resume_btn": {"interactive": False, "variant": "secondary", "visible": False}, | |
| "delete_checkpoints_btn": {"interactive": has_checkpoints, "variant": "stop", "value": "Delete All Checkpoints"} | |
| } | |
| return {"status": "idle", "message": "No training in progress", "ui_updates": ui_updates} | |
| def delete_all_checkpoints(self) -> str: | |
| """Delete all checkpoints in the output directory. | |
| Returns: | |
| Status message | |
| """ | |
| if self.is_training_running(): | |
| return "Cannot delete checkpoints while training is running. Stop training first." | |
| try: | |
| # Find all checkpoint directories | |
| checkpoints = list(OUTPUT_PATH.glob("checkpoint-*")) | |
| if not checkpoints: | |
| return "No checkpoints found to delete." | |
| # Delete each checkpoint directory | |
| for checkpoint in checkpoints: | |
| if checkpoint.is_dir(): | |
| shutil.rmtree(checkpoint) | |
| # Also delete session.json which contains previous training info | |
| if self.session_file.exists(): | |
| self.session_file.unlink() | |
| # Reset status file to idle | |
| self.save_status(state='idle', message='No training in progress') | |
| self.append_log(f"Deleted {len(checkpoints)} checkpoint(s)") | |
| return f"Successfully deleted {len(checkpoints)} checkpoint(s)" | |
| except Exception as e: | |
| error_msg = f"Error deleting checkpoints: {str(e)}" | |
| self.append_log(error_msg) | |
| return error_msg | |
| def clear_training_data(self) -> str: | |
| """Clear all training data""" | |
| if self.is_training_running(): | |
| return gr.Error("Cannot clear data while training is running") | |
| try: | |
| for file in TRAINING_VIDEOS_PATH.glob("*.*"): | |
| file.unlink() | |
| for file in TRAINING_PATH.glob("*.*"): | |
| file.unlink() | |
| self.append_log("Cleared all training data") | |
| return "Training data cleared successfully" | |
| except Exception as e: | |
| error_msg = f"Error clearing training data: {str(e)}" | |
| self.append_log(error_msg) | |
| return error_msg | |
| def save_status(self, state: str, **kwargs) -> None: | |
| """Save current training status""" | |
| status = { | |
| 'status': state, | |
| 'timestamp': datetime.now().isoformat(), | |
| **kwargs | |
| } | |
| if state == "Training started" or state == "initializing": | |
| gr.Info("Initializing model and dataset..") | |
| elif state == "training": | |
| #gr.Info("Training started!") | |
| # Training is in progress | |
| pass | |
| elif state == "completed": | |
| gr.Info("Training completed!") | |
| with open(self.status_file, 'w') as f: | |
| json.dump(status, f, indent=2) | |
| def _start_log_monitor(self, process: subprocess.Popen) -> None: | |
| """Start monitoring process output for logs""" | |
| def monitor(): | |
| self.append_log("Starting log monitor thread") | |
| def read_stream(stream, is_error=False): | |
| if stream: | |
| output = stream.readline() | |
| if output: | |
| # Remove decode() since output is already a string due to universal_newlines=True | |
| line = output.strip() | |
| self.append_log(line) | |
| if is_error: | |
| #logger.error(line) | |
| pass | |
| # Parse metrics only from stdout | |
| metrics = parse_training_log(line) | |
| if metrics: | |
| # Get current status first | |
| current_status = self.get_status() | |
| # Update with new metrics | |
| current_status.update(metrics) | |
| # Ensure 'state' is present, use current status if available, default to 'training' | |
| if 'status' in current_status: | |
| # Use 'status' as 'state' to match the required parameter | |
| state = current_status.pop('status', 'training') | |
| self.save_status(state, **current_status) | |
| else: | |
| # If no status in the current_status, use 'training' as the default state | |
| self.save_status('training', **current_status) | |
| return True | |
| return False | |
| # Create separate threads to monitor stdout and stderr | |
| def monitor_stream(stream, is_error=False): | |
| while process.poll() is None: | |
| if not read_stream(stream, is_error): | |
| time.sleep(0.1) # Short sleep to avoid CPU thrashing | |
| # Start threads to monitor each stream | |
| stdout_thread = threading.Thread(target=monitor_stream, args=(process.stdout, False)) | |
| stderr_thread = threading.Thread(target=monitor_stream, args=(process.stderr, True)) | |
| stdout_thread.daemon = True | |
| stderr_thread.daemon = True | |
| stdout_thread.start() | |
| stderr_thread.start() | |
| # Wait for process to complete | |
| process.wait() | |
| # Wait for threads to finish reading any remaining output | |
| stdout_thread.join(timeout=2) | |
| stderr_thread.join(timeout=2) | |
| # Process any remaining output after process ends | |
| while read_stream(process.stdout): | |
| pass | |
| while read_stream(process.stderr, True): | |
| pass | |
| # Process finished | |
| return_code = process.poll() | |
| if return_code == 0: | |
| success_msg = "Training completed successfully" | |
| self.append_log(success_msg) | |
| gr.Info(success_msg) | |
| self.save_status(state='completed', message=success_msg) | |
| # Upload final model if repository was specified | |
| session = self.load_session() | |
| if session and session['params'].get('repo_id'): | |
| repo_id = session['params']['repo_id'] | |
| latest_run = max(Path(OUTPUT_PATH).glob('*'), key=os.path.getmtime) | |
| if self.upload_to_hub(latest_run, repo_id): | |
| self.append_log(f"Model uploaded to {repo_id}") | |
| else: | |
| self.append_log("Failed to upload model to hub") | |
| else: | |
| error_msg = f"Training failed with return code {return_code}" | |
| self.append_log(error_msg) | |
| logger.error(error_msg) | |
| self.save_status(state='error', message=error_msg) | |
| # Clean up PID file | |
| if self.pid_file.exists(): | |
| self.pid_file.unlink() | |
| monitor_thread = threading.Thread(target=monitor) | |
| monitor_thread.daemon = True | |
| monitor_thread.start() | |
| def upload_to_hub(self, model_path: Path, repo_id: str) -> bool: | |
| """Upload model to Hugging Face Hub | |
| Args: | |
| model_path: Path to model files | |
| repo_id: Repository ID (username/model-name) | |
| Returns: | |
| bool: Whether upload was successful | |
| """ | |
| try: | |
| token = os.getenv("HF_API_TOKEN") | |
| if not token: | |
| self.append_log("Error: HF_API_TOKEN not set") | |
| return False | |
| # Create or get repo | |
| create_repo(repo_id, token=token, repo_type="model", exist_ok=True) | |
| # Upload files | |
| upload_folder( | |
| folder_path=str(OUTPUT_PATH), | |
| repo_id=repo_id, | |
| repo_type="model", | |
| commit_message="Training completed" | |
| ) | |
| return True | |
| except Exception as e: | |
| self.append_log(f"Error uploading to hub: {str(e)}") | |
| return False | |
| def get_model_output_safetensors(self) -> str: | |
| """Return the path to the model safetensors | |
| Returns: | |
| Path to created ZIP file | |
| """ | |
| model_output_safetensors_path = OUTPUT_PATH / "pytorch_lora_weights.safetensors" | |
| return str(model_output_safetensors_path) | |
| def create_training_dataset_zip(self) -> str: | |
| """Create a ZIP file containing all training data | |
| Returns: | |
| Path to created ZIP file | |
| """ | |
| # Create temporary zip file | |
| with tempfile.NamedTemporaryFile(suffix='.zip', delete=False) as temp_zip: | |
| temp_zip_path = str(temp_zip.name) | |
| print(f"Creating zip file for {TRAINING_PATH}..") | |
| try: | |
| make_archive(TRAINING_PATH, temp_zip_path) | |
| print(f"Zip file created!") | |
| return temp_zip_path | |
| except Exception as e: | |
| print(f"Failed to create zip: {str(e)}") | |
| raise gr.Error(f"Failed to create zip: {str(e)}") |