Spaces:
Running
Running
| import gc | |
| from typing import Any, Dict, Union | |
| import torch | |
| from finetrainers.logging import get_logger | |
| logger = get_logger() | |
| def get_memory_statistics(precision: int = 3) -> Dict[str, Any]: | |
| memory_allocated = None | |
| memory_reserved = None | |
| max_memory_allocated = None | |
| max_memory_reserved = None | |
| if torch.cuda.is_available(): | |
| device = torch.cuda.current_device() | |
| memory_allocated = torch.cuda.memory_allocated(device) | |
| memory_reserved = torch.cuda.memory_reserved(device) | |
| max_memory_allocated = torch.cuda.max_memory_allocated(device) | |
| max_memory_reserved = torch.cuda.max_memory_reserved(device) | |
| elif torch.backends.mps.is_available(): | |
| memory_allocated = torch.mps.current_allocated_memory() | |
| else: | |
| logger.warning("No CUDA, MPS, or ROCm device found. Memory statistics are not available.") | |
| return { | |
| "memory_allocated": round(bytes_to_gigabytes(memory_allocated), ndigits=precision), | |
| "memory_reserved": round(bytes_to_gigabytes(memory_reserved), ndigits=precision), | |
| "max_memory_allocated": round(bytes_to_gigabytes(max_memory_allocated), ndigits=precision), | |
| "max_memory_reserved": round(bytes_to_gigabytes(max_memory_reserved), ndigits=precision), | |
| } | |
| def bytes_to_gigabytes(x: int) -> float: | |
| if x is not None: | |
| return x / 1024**3 | |
| def free_memory() -> None: | |
| if torch.cuda.is_available(): | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| torch.cuda.ipc_collect() | |
| # TODO(aryan): handle non-cuda devices | |
| def make_contiguous(x: Union[torch.Tensor, Dict[str, torch.Tensor]]) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: | |
| if isinstance(x, torch.Tensor): | |
| return x.contiguous() | |
| elif isinstance(x, dict): | |
| return {k: make_contiguous(v) for k, v in x.items()} | |
| else: | |
| return x | |