Spaces:
Sleeping
Sleeping
from ..models import ModelManager, SD3TextEncoder1, HunyuanVideoVAEDecoder, HunyuanVideoVAEEncoder | |
from ..models.hunyuan_video_dit import HunyuanVideoDiT | |
from ..models.hunyuan_video_text_encoder import HunyuanVideoLLMEncoder | |
from ..schedulers.flow_match import FlowMatchScheduler | |
from .base import BasePipeline | |
from ..prompters import HunyuanVideoPrompter | |
import torch | |
import torchvision.transforms as transforms | |
from einops import rearrange | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
class HunyuanVideoPipeline(BasePipeline): | |
def __init__(self, device="cuda", torch_dtype=torch.float16): | |
super().__init__(device=device, torch_dtype=torch_dtype) | |
self.scheduler = FlowMatchScheduler(shift=7.0, sigma_min=0.0, extra_one_step=True) | |
self.prompter = HunyuanVideoPrompter() | |
self.text_encoder_1: SD3TextEncoder1 = None | |
self.text_encoder_2: HunyuanVideoLLMEncoder = None | |
self.dit: HunyuanVideoDiT = None | |
self.vae_decoder: HunyuanVideoVAEDecoder = None | |
self.vae_encoder: HunyuanVideoVAEEncoder = None | |
self.model_names = ['text_encoder_1', 'text_encoder_2', 'dit', 'vae_decoder', 'vae_encoder'] | |
self.vram_management = False | |
def enable_vram_management(self): | |
self.vram_management = True | |
self.enable_cpu_offload() | |
self.text_encoder_2.enable_auto_offload(dtype=self.torch_dtype, device=self.device) | |
self.dit.enable_auto_offload(dtype=self.torch_dtype, device=self.device) | |
def fetch_models(self, model_manager: ModelManager): | |
self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1") | |
self.text_encoder_2 = model_manager.fetch_model("hunyuan_video_text_encoder_2") | |
self.dit = model_manager.fetch_model("hunyuan_video_dit") | |
self.vae_decoder = model_manager.fetch_model("hunyuan_video_vae_decoder") | |
self.vae_encoder = model_manager.fetch_model("hunyuan_video_vae_encoder") | |
self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2) | |
def from_model_manager(model_manager: ModelManager, torch_dtype=None, device=None, enable_vram_management=True): | |
if device is None: device = model_manager.device | |
if torch_dtype is None: torch_dtype = model_manager.torch_dtype | |
pipe = HunyuanVideoPipeline(device=device, torch_dtype=torch_dtype) | |
pipe.fetch_models(model_manager) | |
if enable_vram_management: | |
pipe.enable_vram_management() | |
return pipe | |
def generate_crop_size_list(self, base_size=256, patch_size=32, max_ratio=4.0): | |
num_patches = round((base_size / patch_size)**2) | |
assert max_ratio >= 1.0 | |
crop_size_list = [] | |
wp, hp = num_patches, 1 | |
while wp > 0: | |
if max(wp, hp) / min(wp, hp) <= max_ratio: | |
crop_size_list.append((wp * patch_size, hp * patch_size)) | |
if (hp + 1) * wp <= num_patches: | |
hp += 1 | |
else: | |
wp -= 1 | |
return crop_size_list | |
def get_closest_ratio(self, height: float, width: float, ratios: list, buckets: list): | |
aspect_ratio = float(height) / float(width) | |
closest_ratio_id = np.abs(ratios - aspect_ratio).argmin() | |
closest_ratio = min(ratios, key=lambda ratio: abs(float(ratio) - aspect_ratio)) | |
return buckets[closest_ratio_id], float(closest_ratio) | |
def prepare_vae_images_inputs(self, semantic_images, i2v_resolution="720p"): | |
if i2v_resolution == "720p": | |
bucket_hw_base_size = 960 | |
elif i2v_resolution == "540p": | |
bucket_hw_base_size = 720 | |
elif i2v_resolution == "360p": | |
bucket_hw_base_size = 480 | |
else: | |
raise ValueError(f"i2v_resolution: {i2v_resolution} must be in [360p, 540p, 720p]") | |
origin_size = semantic_images[0].size | |
crop_size_list = self.generate_crop_size_list(bucket_hw_base_size, 32) | |
aspect_ratios = np.array([round(float(h) / float(w), 5) for h, w in crop_size_list]) | |
closest_size, closest_ratio = self.get_closest_ratio(origin_size[1], origin_size[0], aspect_ratios, crop_size_list) | |
ref_image_transform = transforms.Compose([ | |
transforms.Resize(closest_size), | |
transforms.CenterCrop(closest_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) | |
]) | |
semantic_image_pixel_values = [ref_image_transform(semantic_image) for semantic_image in semantic_images] | |
semantic_image_pixel_values = torch.cat(semantic_image_pixel_values).unsqueeze(0).unsqueeze(2).to(self.device) | |
target_height, target_width = closest_size | |
return semantic_image_pixel_values, target_height, target_width | |
def encode_prompt(self, prompt, positive=True, clip_sequence_length=77, llm_sequence_length=256, input_images=None): | |
prompt_emb, pooled_prompt_emb, text_mask = self.prompter.encode_prompt( | |
prompt, device=self.device, positive=positive, clip_sequence_length=clip_sequence_length, llm_sequence_length=llm_sequence_length, images=input_images | |
) | |
return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_mask": text_mask} | |
def prepare_extra_input(self, latents=None, guidance=1.0): | |
freqs_cos, freqs_sin = self.dit.prepare_freqs(latents) | |
guidance = torch.Tensor([guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype) | |
return {"freqs_cos": freqs_cos, "freqs_sin": freqs_sin, "guidance": guidance} | |
def tensor2video(self, frames): | |
frames = rearrange(frames, "C T H W -> T H W C") | |
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
frames = [Image.fromarray(frame) for frame in frames] | |
return frames | |
def encode_video(self, frames, tile_size=(17, 30, 30), tile_stride=(12, 20, 20)): | |
tile_size = ((tile_size[0] - 1) * 4 + 1, tile_size[1] * 8, tile_size[2] * 8) | |
tile_stride = (tile_stride[0] * 4, tile_stride[1] * 8, tile_stride[2] * 8) | |
latents = self.vae_encoder.encode_video(frames, tile_size=tile_size, tile_stride=tile_stride) | |
return latents | |
def __call__( | |
self, | |
prompt, | |
negative_prompt="", | |
input_video=None, | |
input_images=None, | |
i2v_resolution="720p", | |
i2v_stability=True, | |
denoising_strength=1.0, | |
seed=None, | |
rand_device=None, | |
height=720, | |
width=1280, | |
num_frames=129, | |
embedded_guidance=6.0, | |
cfg_scale=1.0, | |
num_inference_steps=30, | |
tea_cache_l1_thresh=None, | |
tile_size=(17, 30, 30), | |
tile_stride=(12, 20, 20), | |
step_processor=None, | |
progress_bar_cmd=lambda x: x, | |
progress_bar_st=None, | |
): | |
# Tiler parameters | |
tiler_kwargs = {"tile_size": tile_size, "tile_stride": tile_stride} | |
# Scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
# encoder input images | |
if input_images is not None: | |
self.load_models_to_device(['vae_encoder']) | |
image_pixel_values, height, width = self.prepare_vae_images_inputs(input_images, i2v_resolution=i2v_resolution) | |
with torch.autocast(device_type=self.device, dtype=torch.float16, enabled=True): | |
image_latents = self.vae_encoder(image_pixel_values) | |
# Initialize noise | |
rand_device = self.device if rand_device is None else rand_device | |
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=self.torch_dtype).to(self.device) | |
if input_video is not None: | |
self.load_models_to_device(['vae_encoder']) | |
input_video = self.preprocess_images(input_video) | |
input_video = torch.stack(input_video, dim=2) | |
latents = self.encode_video(input_video, **tiler_kwargs).to(dtype=self.torch_dtype, device=self.device) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
elif input_images is not None and i2v_stability: | |
noise = self.generate_noise((1, 16, (num_frames - 1) // 4 + 1, height//8, width//8), seed=seed, device=rand_device, dtype=image_latents.dtype).to(self.device) | |
t = torch.tensor([0.999]).to(device=self.device) | |
latents = noise * t + image_latents.repeat(1, 1, (num_frames - 1) // 4 + 1, 1, 1) * (1 - t) | |
latents = latents.to(dtype=image_latents.dtype) | |
else: | |
latents = noise | |
# Encode prompts | |
# current mllm does not support vram_management | |
self.load_models_to_device(["text_encoder_1"] if self.vram_management and input_images is None else ["text_encoder_1", "text_encoder_2"]) | |
prompt_emb_posi = self.encode_prompt(prompt, positive=True, input_images=input_images) | |
if cfg_scale != 1.0: | |
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) | |
# Extra input | |
extra_input = self.prepare_extra_input(latents, guidance=embedded_guidance) | |
# TeaCache | |
tea_cache_kwargs = {"tea_cache": TeaCache(num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh) if tea_cache_l1_thresh is not None else None} | |
# Denoise | |
self.load_models_to_device([] if self.vram_management else ["dit"]) | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = timestep.unsqueeze(0).to(self.device) | |
print(f"Step {progress_id + 1} / {len(self.scheduler.timesteps)}") | |
forward_func = lets_dance_hunyuan_video | |
if input_images is not None: | |
latents = torch.concat([image_latents, latents[:, :, 1:, :, :]], dim=2) | |
forward_func = lets_dance_hunyuan_video_i2v | |
# Inference | |
with torch.autocast(device_type=self.device, dtype=self.torch_dtype): | |
noise_pred_posi = forward_func(self.dit, latents, timestep, **prompt_emb_posi, **extra_input, **tea_cache_kwargs) | |
if cfg_scale != 1.0: | |
noise_pred_nega = forward_func(self.dit, latents, timestep, **prompt_emb_nega, **extra_input) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
else: | |
noise_pred = noise_pred_posi | |
# (Experimental feature, may be removed in the future) | |
if step_processor is not None: | |
self.load_models_to_device(['vae_decoder']) | |
rendered_frames = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents, to_final=True) | |
rendered_frames = self.vae_decoder.decode_video(rendered_frames, **tiler_kwargs) | |
rendered_frames = self.tensor2video(rendered_frames[0]) | |
rendered_frames = step_processor(rendered_frames, original_frames=input_video) | |
self.load_models_to_device(['vae_encoder']) | |
rendered_frames = self.preprocess_images(rendered_frames) | |
rendered_frames = torch.stack(rendered_frames, dim=2) | |
target_latents = self.encode_video(rendered_frames).to(dtype=self.torch_dtype, device=self.device) | |
noise_pred = self.scheduler.return_to_timestep(self.scheduler.timesteps[progress_id], latents, target_latents) | |
self.load_models_to_device([] if self.vram_management else ["dit"]) | |
# Scheduler | |
if input_images is not None: | |
latents = self.scheduler.step(noise_pred[:, :, 1:, :, :], self.scheduler.timesteps[progress_id], latents[:, :, 1:, :, :]) | |
latents = torch.concat([image_latents, latents], dim=2) | |
else: | |
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
# Decode | |
self.load_models_to_device(['vae_decoder']) | |
frames = self.vae_decoder.decode_video(latents, **tiler_kwargs) | |
self.load_models_to_device([]) | |
frames = self.tensor2video(frames[0]) | |
return frames | |
class TeaCache: | |
def __init__(self, num_inference_steps, rel_l1_thresh): | |
self.num_inference_steps = num_inference_steps | |
self.step = 0 | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = None | |
self.rel_l1_thresh = rel_l1_thresh | |
self.previous_residual = None | |
self.previous_hidden_states = None | |
def check(self, dit: HunyuanVideoDiT, img, vec): | |
img_ = img.clone() | |
vec_ = vec.clone() | |
img_mod1_shift, img_mod1_scale, _, _, _, _ = dit.double_blocks[0].component_a.mod(vec_).chunk(6, dim=-1) | |
normed_inp = dit.double_blocks[0].component_a.norm1(img_) | |
modulated_inp = normed_inp * (1 + img_mod1_scale.unsqueeze(1)) + img_mod1_shift.unsqueeze(1) | |
if self.step == 0 or self.step == self.num_inference_steps - 1: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
else: | |
coefficients = [7.33226126e+02, -4.01131952e+02, 6.75869174e+01, -3.14987800e+00, 9.61237896e-02] | |
rescale_func = np.poly1d(coefficients) | |
self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) | |
if self.accumulated_rel_l1_distance < self.rel_l1_thresh: | |
should_calc = False | |
else: | |
should_calc = True | |
self.accumulated_rel_l1_distance = 0 | |
self.previous_modulated_input = modulated_inp | |
self.step += 1 | |
if self.step == self.num_inference_steps: | |
self.step = 0 | |
if should_calc: | |
self.previous_hidden_states = img.clone() | |
return not should_calc | |
def store(self, hidden_states): | |
self.previous_residual = hidden_states - self.previous_hidden_states | |
self.previous_hidden_states = None | |
def update(self, hidden_states): | |
hidden_states = hidden_states + self.previous_residual | |
return hidden_states | |
def lets_dance_hunyuan_video( | |
dit: HunyuanVideoDiT, | |
x: torch.Tensor, | |
t: torch.Tensor, | |
prompt_emb: torch.Tensor = None, | |
text_mask: torch.Tensor = None, | |
pooled_prompt_emb: torch.Tensor = None, | |
freqs_cos: torch.Tensor = None, | |
freqs_sin: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
tea_cache: TeaCache = None, | |
**kwargs | |
): | |
B, C, T, H, W = x.shape | |
vec = dit.time_in(t, dtype=torch.float32) + dit.vector_in(pooled_prompt_emb) + dit.guidance_in(guidance * 1000, dtype=torch.float32) | |
img = dit.img_in(x) | |
txt = dit.txt_in(prompt_emb, t, text_mask) | |
# TeaCache | |
if tea_cache is not None: | |
tea_cache_update = tea_cache.check(dit, img, vec) | |
else: | |
tea_cache_update = False | |
if tea_cache_update: | |
print("TeaCache skip forward.") | |
img = tea_cache.update(img) | |
else: | |
split_token = int(text_mask.sum(dim=1)) | |
txt_len = int(txt.shape[1]) | |
for block in tqdm(dit.double_blocks, desc="Double stream blocks"): | |
img, txt = block(img, txt, vec, (freqs_cos, freqs_sin), split_token=split_token) | |
x = torch.concat([img, txt], dim=1) | |
for block in tqdm(dit.single_blocks, desc="Single stream blocks"): | |
x = block(x, vec, (freqs_cos, freqs_sin), txt_len=txt_len, split_token=split_token) | |
img = x[:, :-txt_len] | |
if tea_cache is not None: | |
tea_cache.store(img) | |
img = dit.final_layer(img, vec) | |
img = dit.unpatchify(img, T=T//1, H=H//2, W=W//2) | |
return img | |
def lets_dance_hunyuan_video_i2v( | |
dit: HunyuanVideoDiT, | |
x: torch.Tensor, | |
t: torch.Tensor, | |
prompt_emb: torch.Tensor = None, | |
text_mask: torch.Tensor = None, | |
pooled_prompt_emb: torch.Tensor = None, | |
freqs_cos: torch.Tensor = None, | |
freqs_sin: torch.Tensor = None, | |
guidance: torch.Tensor = None, | |
tea_cache: TeaCache = None, | |
**kwargs | |
): | |
B, C, T, H, W = x.shape | |
# Uncomment below to keep same as official implementation | |
# guidance = guidance.to(dtype=torch.float32).to(torch.bfloat16) | |
vec = dit.time_in(t, dtype=torch.bfloat16) | |
vec_2 = dit.vector_in(pooled_prompt_emb) | |
vec = vec + vec_2 | |
vec = vec + dit.guidance_in(guidance * 1000., dtype=torch.bfloat16) | |
token_replace_vec = dit.time_in(torch.zeros_like(t), dtype=torch.bfloat16) | |
tr_token = (H // 2) * (W // 2) | |
token_replace_vec = token_replace_vec + vec_2 | |
img = dit.img_in(x) | |
txt = dit.txt_in(prompt_emb, t, text_mask) | |
# TeaCache | |
if tea_cache is not None: | |
tea_cache_update = tea_cache.check(dit, img, vec) | |
else: | |
tea_cache_update = False | |
if tea_cache_update: | |
print("TeaCache skip forward.") | |
img = tea_cache.update(img) | |
else: | |
split_token = int(text_mask.sum(dim=1)) | |
txt_len = int(txt.shape[1]) | |
for block in tqdm(dit.double_blocks, desc="Double stream blocks"): | |
img, txt = block(img, txt, vec, (freqs_cos, freqs_sin), token_replace_vec, tr_token, split_token) | |
x = torch.concat([img, txt], dim=1) | |
for block in tqdm(dit.single_blocks, desc="Single stream blocks"): | |
x = block(x, vec, (freqs_cos, freqs_sin), txt_len, token_replace_vec, tr_token, split_token) | |
img = x[:, :-txt_len] | |
if tea_cache is not None: | |
tea_cache.store(img) | |
img = dit.final_layer(img, vec) | |
img = dit.unpatchify(img, T=T//1, H=H//2, W=W//2) | |
return img | |