jbilcke-hf's picture
jbilcke-hf HF Staff
Upload 210 files
4bf9661 verified
from ..models import ModelManager, FluxTextEncoder2, CogDiT, CogVAEEncoder, CogVAEDecoder
from ..prompters import CogPrompter
from ..schedulers import EnhancedDDIMScheduler
from .base import BasePipeline
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
from einops import rearrange
class CogVideoPipeline(BasePipeline):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16)
self.scheduler = EnhancedDDIMScheduler(rescale_zero_terminal_snr=True, prediction_type="v_prediction")
self.prompter = CogPrompter()
# models
self.text_encoder: FluxTextEncoder2 = None
self.dit: CogDiT = None
self.vae_encoder: CogVAEEncoder = None
self.vae_decoder: CogVAEDecoder = None
def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]):
self.text_encoder = model_manager.fetch_model("flux_text_encoder_2")
self.dit = model_manager.fetch_model("cog_dit")
self.vae_encoder = model_manager.fetch_model("cog_vae_encoder")
self.vae_decoder = model_manager.fetch_model("cog_vae_decoder")
self.prompter.fetch_models(self.text_encoder)
self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes)
@staticmethod
def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[]):
pipe = CogVideoPipeline(
device=model_manager.device,
torch_dtype=model_manager.torch_dtype
)
pipe.fetch_models(model_manager, prompt_refiner_classes)
return pipe
def tensor2video(self, frames):
frames = rearrange(frames, "C T H W -> T H W C")
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
frames = [Image.fromarray(frame) for frame in frames]
return frames
def encode_prompt(self, prompt, positive=True):
prompt_emb = self.prompter.encode_prompt(prompt, device=self.device, positive=positive)
return {"prompt_emb": prompt_emb}
def prepare_extra_input(self, latents):
return {"image_rotary_emb": self.dit.prepare_rotary_positional_embeddings(latents.shape[3], latents.shape[4], latents.shape[2], device=self.device)}
@torch.no_grad()
def __call__(
self,
prompt,
negative_prompt="",
input_video=None,
cfg_scale=7.0,
denoising_strength=1.0,
num_frames=49,
height=480,
width=720,
num_inference_steps=20,
tiled=False,
tile_size=(60, 90),
tile_stride=(30, 45),
seed=None,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
height, width = self.check_resize_height_width(height, width)
# Tiler parameters
tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride}
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength)
# Prepare latent tensors
noise = self.generate_noise((1, 16, num_frames // 4 + 1, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype)
if denoising_strength == 1.0:
latents = noise.clone()
else:
input_video = self.preprocess_images(input_video)
input_video = torch.stack(input_video, dim=2)
latents = self.vae_encoder.encode_video(input_video, **tiler_kwargs, progress_bar=progress_bar_cmd).to(dtype=self.torch_dtype)
latents = self.scheduler.add_noise(latents, noise, self.scheduler.timesteps[0])
if not tiled: latents = latents.to(self.device)
# Encode prompt
prompt_emb_posi = self.encode_prompt(prompt, positive=True)
if cfg_scale != 1.0:
prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False)
# Extra input
extra_input = self.prepare_extra_input(latents)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
timestep = timestep.unsqueeze(0).to(self.device)
# Classifier-free guidance
noise_pred_posi = self.dit(
latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs, **extra_input
)
if cfg_scale != 1.0:
noise_pred_nega = self.dit(
latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs, **extra_input
)
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega)
else:
noise_pred = noise_pred_posi
# DDIM
latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents)
# Update progress bar
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
video = self.vae_decoder.decode_video(latents.to("cpu"), **tiler_kwargs, progress_bar=progress_bar_cmd)
video = self.tensor2video(video[0])
return video