Spaces:
Running
on
L40S
Running
on
L40S
import numpy as np | |
import torch | |
from PIL import Image | |
from io import BytesIO | |
from tqdm.auto import tqdm | |
from transformers import CLIPFeatureExtractor, CLIPImageProcessor | |
from transformers import CLIPConfig | |
from dataclasses import dataclass | |
from transformers import CLIPModel as HFCLIPModel | |
from safetensors.torch import load_file | |
from torch import nn, einsum | |
from .trainer.models.base_model import BaseModelConfig | |
from transformers import CLIPConfig | |
from transformers import AutoProcessor, AutoModel, AutoTokenizer | |
from typing import Any, Optional, Tuple, Union, List | |
import torch | |
from .trainer.models.cross_modeling import Cross_model | |
from .trainer.models import clip_model | |
import torch.nn.functional as F | |
import gc | |
import json | |
from .config import MODEL_PATHS | |
class MPScore(torch.nn.Module): | |
def __init__(self, device: Union[str, torch.device], path: str = MODEL_PATHS, condition: str = 'overall'): | |
super().__init__() | |
"""Initialize the MPSModel with a processor, tokenizer, and model. | |
Args: | |
device (Union[str, torch.device]): The device to load the model on. | |
""" | |
self.device = device | |
processor_name_or_path = path.get("clip") | |
self.image_processor = CLIPImageProcessor.from_pretrained(processor_name_or_path) | |
self.tokenizer = AutoTokenizer.from_pretrained(processor_name_or_path, trust_remote_code=True) | |
self.model = clip_model.CLIPModel(processor_name_or_path, config_file=True) | |
state_dict = load_file(path.get("mps")) | |
self.model.load_state_dict(state_dict, strict=False) | |
self.model.to(device) | |
self.condition = condition | |
def _calculate_score(self, image: torch.Tensor, prompt: str) -> float: | |
"""Calculate the reward score for a single image and prompt. | |
Args: | |
image (torch.Tensor): The processed image tensor. | |
prompt (str): The prompt text. | |
Returns: | |
float: The reward score. | |
""" | |
def _tokenize(caption): | |
input_ids = self.tokenizer( | |
caption, | |
max_length=self.tokenizer.model_max_length, | |
padding="max_length", | |
truncation=True, | |
return_tensors="pt" | |
).input_ids | |
return input_ids | |
text_input = _tokenize(prompt).to(self.device) | |
if self.condition == 'overall': | |
condition_prompt = 'light, color, clarity, tone, style, ambiance, artistry, shape, face, hair, hands, limbs, structure, instance, texture, quantity, attributes, position, number, location, word, things' | |
elif self.condition == 'aesthetics': | |
condition_prompt = 'light, color, clarity, tone, style, ambiance, artistry' | |
elif self.condition == 'quality': | |
condition_prompt = 'shape, face, hair, hands, limbs, structure, instance, texture' | |
elif self.condition == 'semantic': | |
condition_prompt = 'quantity, attributes, position, number, location' | |
else: | |
raise ValueError( | |
f"Unsupported condition: {self.condition}. Choose 'overall', 'aesthetics', 'quality', or 'semantic'.") | |
condition_batch = _tokenize(condition_prompt).repeat(text_input.shape[0], 1).to(self.device) | |
with torch.no_grad(): | |
text_f, text_features = self.model.model.get_text_features(text_input) | |
image_f = self.model.model.get_image_features(image.half()) | |
condition_f, _ = self.model.model.get_text_features(condition_batch) | |
sim_text_condition = einsum('b i d, b j d -> b j i', text_f, condition_f) | |
sim_text_condition = torch.max(sim_text_condition, dim=1, keepdim=True)[0] | |
sim_text_condition = sim_text_condition / sim_text_condition.max() | |
mask = torch.where(sim_text_condition > 0.3, 0, float('-inf')) | |
mask = mask.repeat(1, image_f.shape[1], 1) | |
image_features = self.model.cross_model(image_f, text_f, mask.half())[:, 0, :] | |
image_features = image_features / image_features.norm(dim=-1, keepdim=True) | |
text_features = text_features / text_features.norm(dim=-1, keepdim=True) | |
image_score = self.model.logit_scale.exp() * text_features @ image_features.T | |
return image_score[0].cpu().numpy().item() | |
def score(self, images: Union[str, List[str], Image.Image, List[Image.Image]], prompt: str) -> List[float]: | |
"""Score the images based on the prompt. | |
Args: | |
images (Union[str, List[str], Image.Image, List[Image.Image]]): Path(s) to the image(s) or PIL image(s). | |
prompt (str): The prompt text. | |
Returns: | |
List[float]: List of reward scores for the images. | |
""" | |
if isinstance(images, (str, Image.Image)): | |
# Single image | |
if isinstance(images, str): | |
image = self.image_processor(Image.open(images), return_tensors="pt")["pixel_values"].to(self.device) | |
else: | |
image = self.image_processor(images, return_tensors="pt")["pixel_values"].to(self.device) | |
return [self._calculate_score(image, prompt)] | |
elif isinstance(images, list): | |
# Multiple images | |
scores = [] | |
for one_images in images: | |
if isinstance(one_images, str): | |
image = self.image_processor(Image.open(one_images), return_tensors="pt")["pixel_values"].to(self.device) | |
elif isinstance(one_images, Image.Image): | |
image = self.image_processor(one_images, return_tensors="pt")["pixel_values"].to(self.device) | |
else: | |
raise TypeError("The type of parameter images is illegal.") | |
scores.append(self._calculate_score(image, prompt)) | |
return scores | |
else: | |
raise TypeError("The type of parameter images is illegal.") | |