Spaces:
Paused
Paused
| from ..models import ModelManager, SVDImageEncoder, SVDUNet, SVDVAEEncoder, SVDVAEDecoder | |
| from ..schedulers import ContinuousODEScheduler | |
| from .base import BasePipeline | |
| import torch | |
| from tqdm import tqdm | |
| from PIL import Image | |
| import numpy as np | |
| from einops import rearrange, repeat | |
| class SVDVideoPipeline(BasePipeline): | |
| def __init__(self, device="cuda", torch_dtype=torch.float16): | |
| super().__init__(device=device, torch_dtype=torch_dtype) | |
| self.scheduler = ContinuousODEScheduler() | |
| # models | |
| self.image_encoder: SVDImageEncoder = None | |
| self.unet: SVDUNet = None | |
| self.vae_encoder: SVDVAEEncoder = None | |
| self.vae_decoder: SVDVAEDecoder = None | |
| def fetch_models(self, model_manager: ModelManager): | |
| self.image_encoder = model_manager.fetch_model("svd_image_encoder") | |
| self.unet = model_manager.fetch_model("svd_unet") | |
| self.vae_encoder = model_manager.fetch_model("svd_vae_encoder") | |
| self.vae_decoder = model_manager.fetch_model("svd_vae_decoder") | |
| def from_model_manager(model_manager: ModelManager, **kwargs): | |
| pipe = SVDVideoPipeline( | |
| device=model_manager.device, | |
| torch_dtype=model_manager.torch_dtype | |
| ) | |
| pipe.fetch_models(model_manager) | |
| return pipe | |
| def encode_image_with_clip(self, image): | |
| image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) | |
| image = SVDCLIPImageProcessor().resize_with_antialiasing(image, (224, 224)) | |
| image = (image + 1.0) / 2.0 | |
| mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype) | |
| std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype) | |
| image = (image - mean) / std | |
| image_emb = self.image_encoder(image) | |
| return image_emb | |
| def encode_image_with_vae(self, image, noise_aug_strength, seed=None): | |
| image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) | |
| noise = self.generate_noise(image.shape, seed=seed, device=self.device, dtype=self.torch_dtype) | |
| image = image + noise_aug_strength * noise | |
| image_emb = self.vae_encoder(image) / self.vae_encoder.scaling_factor | |
| return image_emb | |
| def encode_video_with_vae(self, video): | |
| video = torch.concat([self.preprocess_image(frame) for frame in video], dim=0) | |
| video = rearrange(video, "T C H W -> 1 C T H W") | |
| video = video.to(device=self.device, dtype=self.torch_dtype) | |
| latents = self.vae_encoder.encode_video(video) | |
| latents = rearrange(latents[0], "C T H W -> T C H W") | |
| return latents | |
| def tensor2video(self, frames): | |
| frames = rearrange(frames, "C T H W -> T H W C") | |
| frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
| frames = [Image.fromarray(frame) for frame in frames] | |
| return frames | |
| def calculate_noise_pred( | |
| self, | |
| latents, | |
| timestep, | |
| add_time_id, | |
| cfg_scales, | |
| image_emb_vae_posi, image_emb_clip_posi, | |
| image_emb_vae_nega, image_emb_clip_nega | |
| ): | |
| # Positive side | |
| noise_pred_posi = self.unet( | |
| torch.cat([latents, image_emb_vae_posi], dim=1), | |
| timestep, image_emb_clip_posi, add_time_id | |
| ) | |
| # Negative side | |
| noise_pred_nega = self.unet( | |
| torch.cat([latents, image_emb_vae_nega], dim=1), | |
| timestep, image_emb_clip_nega, add_time_id | |
| ) | |
| # Classifier-free guidance | |
| noise_pred = noise_pred_nega + cfg_scales * (noise_pred_posi - noise_pred_nega) | |
| return noise_pred | |
| def post_process_latents(self, latents, post_normalize=True, contrast_enhance_scale=1.0): | |
| if post_normalize: | |
| mean, std = latents.mean(), latents.std() | |
| latents = (latents - latents.mean(dim=[1, 2, 3], keepdim=True)) / latents.std(dim=[1, 2, 3], keepdim=True) * std + mean | |
| latents = latents * contrast_enhance_scale | |
| return latents | |
| def __call__( | |
| self, | |
| input_image=None, | |
| input_video=None, | |
| mask_frames=[], | |
| mask_frame_ids=[], | |
| min_cfg_scale=1.0, | |
| max_cfg_scale=3.0, | |
| denoising_strength=1.0, | |
| num_frames=25, | |
| height=576, | |
| width=1024, | |
| fps=7, | |
| motion_bucket_id=127, | |
| noise_aug_strength=0.02, | |
| num_inference_steps=20, | |
| post_normalize=True, | |
| contrast_enhance_scale=1.2, | |
| seed=None, | |
| progress_bar_cmd=tqdm, | |
| progress_bar_st=None, | |
| ): | |
| height, width = self.check_resize_height_width(height, width) | |
| # Prepare scheduler | |
| self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength) | |
| # Prepare latent tensors | |
| noise = self.generate_noise((num_frames, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) | |
| if denoising_strength == 1.0: | |
| latents = noise.clone() | |
| else: | |
| latents = self.encode_video_with_vae(input_video) | |
| latents = self.scheduler.add_noise(latents, noise, self.scheduler.timesteps[0]) | |
| # Prepare mask frames | |
| if len(mask_frames) > 0: | |
| mask_latents = self.encode_video_with_vae(mask_frames) | |
| # Encode image | |
| image_emb_clip_posi = self.encode_image_with_clip(input_image) | |
| image_emb_clip_nega = torch.zeros_like(image_emb_clip_posi) | |
| image_emb_vae_posi = repeat(self.encode_image_with_vae(input_image, noise_aug_strength, seed=seed), "B C H W -> (B T) C H W", T=num_frames) | |
| image_emb_vae_nega = torch.zeros_like(image_emb_vae_posi) | |
| # Prepare classifier-free guidance | |
| cfg_scales = torch.linspace(min_cfg_scale, max_cfg_scale, num_frames) | |
| cfg_scales = cfg_scales.reshape(num_frames, 1, 1, 1).to(device=self.device, dtype=self.torch_dtype) | |
| # Prepare positional id | |
| add_time_id = torch.tensor([[fps-1, motion_bucket_id, noise_aug_strength]], device=self.device) | |
| # Denoise | |
| for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
| # Mask frames | |
| for frame_id, mask_frame_id in enumerate(mask_frame_ids): | |
| latents[mask_frame_id] = self.scheduler.add_noise(mask_latents[frame_id], noise[mask_frame_id], timestep) | |
| # Fetch model output | |
| noise_pred = self.calculate_noise_pred( | |
| latents, timestep, add_time_id, cfg_scales, | |
| image_emb_vae_posi, image_emb_clip_posi, image_emb_vae_nega, image_emb_clip_nega | |
| ) | |
| # Forward Euler | |
| latents = self.scheduler.step(noise_pred, timestep, latents) | |
| # Update progress bar | |
| if progress_bar_st is not None: | |
| progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
| # Decode image | |
| latents = self.post_process_latents(latents, post_normalize=post_normalize, contrast_enhance_scale=contrast_enhance_scale) | |
| video = self.vae_decoder.decode_video(latents, progress_bar=progress_bar_cmd) | |
| video = self.tensor2video(video) | |
| return video | |
| class SVDCLIPImageProcessor: | |
| def __init__(self): | |
| pass | |
| def resize_with_antialiasing(self, input, size, interpolation="bicubic", align_corners=True): | |
| h, w = input.shape[-2:] | |
| factors = (h / size[0], w / size[1]) | |
| # First, we have to determine sigma | |
| # Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171 | |
| sigmas = ( | |
| max((factors[0] - 1.0) / 2.0, 0.001), | |
| max((factors[1] - 1.0) / 2.0, 0.001), | |
| ) | |
| # Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma | |
| # https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206 | |
| # But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now | |
| ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3)) | |
| # Make sure it is odd | |
| if (ks[0] % 2) == 0: | |
| ks = ks[0] + 1, ks[1] | |
| if (ks[1] % 2) == 0: | |
| ks = ks[0], ks[1] + 1 | |
| input = self._gaussian_blur2d(input, ks, sigmas) | |
| output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners) | |
| return output | |
| def _compute_padding(self, kernel_size): | |
| """Compute padding tuple.""" | |
| # 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom) | |
| # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad | |
| if len(kernel_size) < 2: | |
| raise AssertionError(kernel_size) | |
| computed = [k - 1 for k in kernel_size] | |
| # for even kernels we need to do asymmetric padding :( | |
| out_padding = 2 * len(kernel_size) * [0] | |
| for i in range(len(kernel_size)): | |
| computed_tmp = computed[-(i + 1)] | |
| pad_front = computed_tmp // 2 | |
| pad_rear = computed_tmp - pad_front | |
| out_padding[2 * i + 0] = pad_front | |
| out_padding[2 * i + 1] = pad_rear | |
| return out_padding | |
| def _filter2d(self, input, kernel): | |
| # prepare kernel | |
| b, c, h, w = input.shape | |
| tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype) | |
| tmp_kernel = tmp_kernel.expand(-1, c, -1, -1) | |
| height, width = tmp_kernel.shape[-2:] | |
| padding_shape: list[int] = self._compute_padding([height, width]) | |
| input = torch.nn.functional.pad(input, padding_shape, mode="reflect") | |
| # kernel and input tensor reshape to align element-wise or batch-wise params | |
| tmp_kernel = tmp_kernel.reshape(-1, 1, height, width) | |
| input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1)) | |
| # convolve the tensor with the kernel. | |
| output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1) | |
| out = output.view(b, c, h, w) | |
| return out | |
| def _gaussian(self, window_size: int, sigma): | |
| if isinstance(sigma, float): | |
| sigma = torch.tensor([[sigma]]) | |
| batch_size = sigma.shape[0] | |
| x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) | |
| if window_size % 2 == 0: | |
| x = x + 0.5 | |
| gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) | |
| return gauss / gauss.sum(-1, keepdim=True) | |
| def _gaussian_blur2d(self, input, kernel_size, sigma): | |
| if isinstance(sigma, tuple): | |
| sigma = torch.tensor([sigma], dtype=input.dtype) | |
| else: | |
| sigma = sigma.to(dtype=input.dtype) | |
| ky, kx = int(kernel_size[0]), int(kernel_size[1]) | |
| bs = sigma.shape[0] | |
| kernel_x = self._gaussian(kx, sigma[:, 1].view(bs, 1)) | |
| kernel_y = self._gaussian(ky, sigma[:, 0].view(bs, 1)) | |
| out_x = self._filter2d(input, kernel_x[..., None, :]) | |
| out = self._filter2d(out_x, kernel_y[..., None]) | |
| return out | |