Spaces:
Paused
Paused
| from ..models import SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDIpAdapter, IpAdapterCLIPImageEmbedder | |
| from ..models.model_manager import ModelManager | |
| from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator | |
| from ..prompters import SDPrompter | |
| from ..schedulers import EnhancedDDIMScheduler | |
| from .base import BasePipeline | |
| from .dancer import lets_dance | |
| from typing import List | |
| import torch | |
| from tqdm import tqdm | |
| class SDImagePipeline(BasePipeline): | |
| def __init__(self, device="cuda", torch_dtype=torch.float16): | |
| super().__init__(device=device, torch_dtype=torch_dtype) | |
| self.scheduler = EnhancedDDIMScheduler() | |
| self.prompter = SDPrompter() | |
| # models | |
| self.text_encoder: SDTextEncoder = None | |
| self.unet: SDUNet = None | |
| self.vae_decoder: SDVAEDecoder = None | |
| self.vae_encoder: SDVAEEncoder = None | |
| self.controlnet: MultiControlNetManager = None | |
| self.ipadapter_image_encoder: IpAdapterCLIPImageEmbedder = None | |
| self.ipadapter: SDIpAdapter = None | |
| self.model_names = ['text_encoder', 'unet', 'vae_decoder', 'vae_encoder', 'controlnet', 'ipadapter_image_encoder', 'ipadapter'] | |
| def denoising_model(self): | |
| return self.unet | |
| def fetch_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[]): | |
| # Main models | |
| self.text_encoder = model_manager.fetch_model("sd_text_encoder") | |
| self.unet = model_manager.fetch_model("sd_unet") | |
| self.vae_decoder = model_manager.fetch_model("sd_vae_decoder") | |
| self.vae_encoder = model_manager.fetch_model("sd_vae_encoder") | |
| self.prompter.fetch_models(self.text_encoder) | |
| self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) | |
| # ControlNets | |
| controlnet_units = [] | |
| for config in controlnet_config_units: | |
| controlnet_unit = ControlNetUnit( | |
| Annotator(config.processor_id, device=self.device), | |
| model_manager.fetch_model("sd_controlnet", config.model_path), | |
| config.scale | |
| ) | |
| controlnet_units.append(controlnet_unit) | |
| self.controlnet = MultiControlNetManager(controlnet_units) | |
| # IP-Adapters | |
| self.ipadapter = model_manager.fetch_model("sd_ipadapter") | |
| self.ipadapter_image_encoder = model_manager.fetch_model("sd_ipadapter_clip_image_encoder") | |
| def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[], prompt_refiner_classes=[], device=None): | |
| pipe = SDImagePipeline( | |
| device=model_manager.device if device is None else device, | |
| torch_dtype=model_manager.torch_dtype, | |
| ) | |
| pipe.fetch_models(model_manager, controlnet_config_units, prompt_refiner_classes=[]) | |
| return pipe | |
| def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): | |
| latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| return latents | |
| def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): | |
| image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| image = self.vae_output_to_image(image) | |
| return image | |
| def encode_prompt(self, prompt, clip_skip=1, positive=True): | |
| prompt_emb = self.prompter.encode_prompt(prompt, clip_skip=clip_skip, device=self.device, positive=positive) | |
| return {"encoder_hidden_states": prompt_emb} | |
| def prepare_extra_input(self, latents=None): | |
| return {} | |
| def __call__( | |
| self, | |
| prompt, | |
| local_prompts=[], | |
| masks=[], | |
| mask_scales=[], | |
| negative_prompt="", | |
| cfg_scale=7.5, | |
| clip_skip=1, | |
| input_image=None, | |
| ipadapter_images=None, | |
| ipadapter_scale=1.0, | |
| controlnet_image=None, | |
| denoising_strength=1.0, | |
| height=512, | |
| width=512, | |
| num_inference_steps=20, | |
| tiled=False, | |
| tile_size=64, | |
| tile_stride=32, | |
| seed=None, | |
| progress_bar_cmd=tqdm, | |
| progress_bar_st=None, | |
| ): | |
| height, width = self.check_resize_height_width(height, width) | |
| # Tiler parameters | |
| tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
| # Prepare scheduler | |
| self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
| # Prepare latent tensors | |
| if input_image is not None: | |
| self.load_models_to_device(['vae_encoder']) | |
| image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) | |
| latents = self.encode_image(image, **tiler_kwargs) | |
| noise = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) | |
| latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
| else: | |
| latents = self.generate_noise((1, 4, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) | |
| # Encode prompts | |
| self.load_models_to_device(['text_encoder']) | |
| prompt_emb_posi = self.encode_prompt(prompt, clip_skip=clip_skip, positive=True) | |
| prompt_emb_nega = self.encode_prompt(negative_prompt, clip_skip=clip_skip, positive=False) | |
| prompt_emb_locals = [self.encode_prompt(prompt_local, clip_skip=clip_skip, positive=True) for prompt_local in local_prompts] | |
| # IP-Adapter | |
| if ipadapter_images is not None: | |
| self.load_models_to_device(['ipadapter_image_encoder']) | |
| ipadapter_image_encoding = self.ipadapter_image_encoder(ipadapter_images) | |
| self.load_models_to_device(['ipadapter']) | |
| ipadapter_kwargs_list_posi = {"ipadapter_kwargs_list": self.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)} | |
| ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": self.ipadapter(torch.zeros_like(ipadapter_image_encoding))} | |
| else: | |
| ipadapter_kwargs_list_posi, ipadapter_kwargs_list_nega = {"ipadapter_kwargs_list": {}}, {"ipadapter_kwargs_list": {}} | |
| # Prepare ControlNets | |
| if controlnet_image is not None: | |
| self.load_models_to_device(['controlnet']) | |
| controlnet_image = self.controlnet.process_image(controlnet_image).to(device=self.device, dtype=self.torch_dtype) | |
| controlnet_image = controlnet_image.unsqueeze(1) | |
| controlnet_kwargs = {"controlnet_frames": controlnet_image} | |
| else: | |
| controlnet_kwargs = {"controlnet_frames": None} | |
| # Denoise | |
| self.load_models_to_device(['controlnet', 'unet']) | |
| for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
| timestep = timestep.unsqueeze(0).to(self.device) | |
| # Classifier-free guidance | |
| inference_callback = lambda prompt_emb_posi: lets_dance( | |
| self.unet, motion_modules=None, controlnet=self.controlnet, | |
| sample=latents, timestep=timestep, | |
| **prompt_emb_posi, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_posi, | |
| device=self.device, | |
| ) | |
| noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) | |
| noise_pred_nega = lets_dance( | |
| self.unet, motion_modules=None, controlnet=self.controlnet, | |
| sample=latents, timestep=timestep, **prompt_emb_nega, **controlnet_kwargs, **tiler_kwargs, **ipadapter_kwargs_list_nega, | |
| device=self.device, | |
| ) | |
| noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
| # DDIM | |
| latents = self.scheduler.step(noise_pred, timestep, latents) | |
| # UI | |
| if progress_bar_st is not None: | |
| progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
| # Decode image | |
| self.load_models_to_device(['vae_decoder']) | |
| image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| # offload all models | |
| self.load_models_to_device([]) | |
| return image | |