Spaces:
Paused
Paused
| from ..models import ModelManager, SD3TextEncoder1, SD3TextEncoder2, SD3TextEncoder3, SD3DiT, SD3VAEDecoder, SD3VAEEncoder | |
| from ..prompters import SD3Prompter | |
| from ..schedulers import FlowMatchScheduler | |
| from .base import BasePipeline | |
| import torch | |
| from tqdm import tqdm | |
| class SD3ImagePipeline(BasePipeline): | |
| def __init__(self, device="cuda", torch_dtype=torch.float16): | |
| super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) | |
| self.scheduler = FlowMatchScheduler() | |
| self.prompter = SD3Prompter() | |
| # models | |
| self.text_encoder_1: SD3TextEncoder1 = None | |
| self.text_encoder_2: SD3TextEncoder2 = None | |
| self.text_encoder_3: SD3TextEncoder3 = None | |
| self.dit: SD3DiT = None | |
| self.vae_decoder: SD3VAEDecoder = None | |
| self.vae_encoder: SD3VAEEncoder = None | |
| self.model_names = ['text_encoder_1', 'text_encoder_2', 'text_encoder_3', 'dit', 'vae_decoder', 'vae_encoder'] | |
| def denoising_model(self): | |
| return self.dit | |
| def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): | |
| self.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1") | |
| self.text_encoder_2 = model_manager.fetch_model("sd3_text_encoder_2") | |
| self.text_encoder_3 = model_manager.fetch_model("sd3_text_encoder_3") | |
| self.dit = model_manager.fetch_model("sd3_dit") | |
| self.vae_decoder = model_manager.fetch_model("sd3_vae_decoder") | |
| self.vae_encoder = model_manager.fetch_model("sd3_vae_encoder") | |
| self.prompter.fetch_models(self.text_encoder_1, self.text_encoder_2, self.text_encoder_3) | |
| self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) | |
| def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[], device=None): | |
| pipe = SD3ImagePipeline( | |
| device=model_manager.device if device is None else device, | |
| torch_dtype=model_manager.torch_dtype, | |
| ) | |
| pipe.fetch_models(model_manager, prompt_refiner_classes) | |
| return pipe | |
| def encode_image(self, image, tiled=False, tile_size=64, tile_stride=32): | |
| latents = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| return latents | |
| def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): | |
| image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| image = self.vae_output_to_image(image) | |
| return image | |
| def encode_prompt(self, prompt, positive=True, t5_sequence_length=77): | |
| prompt_emb, pooled_prompt_emb = self.prompter.encode_prompt( | |
| prompt, device=self.device, positive=positive, t5_sequence_length=t5_sequence_length | |
| ) | |
| return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb} | |
| def prepare_extra_input(self, latents=None): | |
| return {} | |
| def __call__( | |
| self, | |
| prompt, | |
| local_prompts=[], | |
| masks=[], | |
| mask_scales=[], | |
| negative_prompt="", | |
| cfg_scale=7.5, | |
| input_image=None, | |
| denoising_strength=1.0, | |
| height=1024, | |
| width=1024, | |
| num_inference_steps=20, | |
| t5_sequence_length=77, | |
| tiled=False, | |
| tile_size=128, | |
| tile_stride=64, | |
| seed=None, | |
| progress_bar_cmd=tqdm, | |
| progress_bar_st=None, | |
| ): | |
| height, width = self.check_resize_height_width(height, width) | |
| # Tiler parameters | |
| tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
| # Prepare scheduler | |
| self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
| # Prepare latent tensors | |
| if input_image is not None: | |
| self.load_models_to_device(['vae_encoder']) | |
| image = self.preprocess_image(input_image).to(device=self.device, dtype=self.torch_dtype) | |
| latents = self.encode_image(image, **tiler_kwargs) | |
| noise = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) | |
| latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
| else: | |
| latents = self.generate_noise((1, 16, height//8, width//8), seed=seed, device=self.device, dtype=self.torch_dtype) | |
| # Encode prompts | |
| self.load_models_to_device(['text_encoder_1', 'text_encoder_2', 'text_encoder_3']) | |
| prompt_emb_posi = self.encode_prompt(prompt, positive=True, t5_sequence_length=t5_sequence_length) | |
| prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False, t5_sequence_length=t5_sequence_length) | |
| prompt_emb_locals = [self.encode_prompt(prompt_local, t5_sequence_length=t5_sequence_length) for prompt_local in local_prompts] | |
| # Denoise | |
| self.load_models_to_device(['dit']) | |
| for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
| timestep = timestep.unsqueeze(0).to(self.device) | |
| # Classifier-free guidance | |
| inference_callback = lambda prompt_emb_posi: self.dit( | |
| latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs, | |
| ) | |
| noise_pred_posi = self.control_noise_via_local_prompts(prompt_emb_posi, prompt_emb_locals, masks, mask_scales, inference_callback) | |
| noise_pred_nega = self.dit( | |
| latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs, | |
| ) | |
| noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
| # DDIM | |
| latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
| # UI | |
| if progress_bar_st is not None: | |
| progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
| # Decode image | |
| self.load_models_to_device(['vae_decoder']) | |
| image = self.decode_image(latents, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| # offload all models | |
| self.load_models_to_device([]) | |
| return image | |