Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| from ..models import ModelManager, FluxTextEncoder2, CogDiT, CogVAEEncoder, CogVAEDecoder | |
| from ..prompters import CogPrompter | |
| from ..schedulers import EnhancedDDIMScheduler | |
| from .base import BasePipeline | |
| import torch | |
| from tqdm import tqdm | |
| from PIL import Image | |
| import numpy as np | |
| from einops import rearrange | |
| class CogVideoPipeline(BasePipeline): | |
| def __init__(self, device="cuda", torch_dtype=torch.float16): | |
| super().__init__(device=device, torch_dtype=torch_dtype, height_division_factor=16, width_division_factor=16) | |
| self.scheduler = EnhancedDDIMScheduler(rescale_zero_terminal_snr=True, prediction_type="v_prediction") | |
| self.prompter = CogPrompter() | |
| # models | |
| self.text_encoder: FluxTextEncoder2 = None | |
| self.dit: CogDiT = None | |
| self.vae_encoder: CogVAEEncoder = None | |
| self.vae_decoder: CogVAEDecoder = None | |
| def fetch_models(self, model_manager: ModelManager, prompt_refiner_classes=[]): | |
| self.text_encoder = model_manager.fetch_model("flux_text_encoder_2") | |
| self.dit = model_manager.fetch_model("cog_dit") | |
| self.vae_encoder = model_manager.fetch_model("cog_vae_encoder") | |
| self.vae_decoder = model_manager.fetch_model("cog_vae_decoder") | |
| self.prompter.fetch_models(self.text_encoder) | |
| self.prompter.load_prompt_refiners(model_manager, prompt_refiner_classes) | |
| def from_model_manager(model_manager: ModelManager, prompt_refiner_classes=[]): | |
| pipe = CogVideoPipeline( | |
| device=model_manager.device, | |
| torch_dtype=model_manager.torch_dtype | |
| ) | |
| pipe.fetch_models(model_manager, prompt_refiner_classes) | |
| return pipe | |
| def tensor2video(self, frames): | |
| frames = rearrange(frames, "C T H W -> T H W C") | |
| frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8) | |
| frames = [Image.fromarray(frame) for frame in frames] | |
| return frames | |
| def encode_prompt(self, prompt, positive=True): | |
| prompt_emb = self.prompter.encode_prompt(prompt, device=self.device, positive=positive) | |
| return {"prompt_emb": prompt_emb} | |
| def prepare_extra_input(self, latents): | |
| return {"image_rotary_emb": self.dit.prepare_rotary_positional_embeddings(latents.shape[3], latents.shape[4], latents.shape[2], device=self.device)} | |
| def __call__( | |
| self, | |
| prompt, | |
| negative_prompt="", | |
| input_video=None, | |
| cfg_scale=7.0, | |
| denoising_strength=1.0, | |
| num_frames=49, | |
| height=480, | |
| width=720, | |
| num_inference_steps=20, | |
| tiled=False, | |
| tile_size=(60, 90), | |
| tile_stride=(30, 45), | |
| seed=None, | |
| progress_bar_cmd=tqdm, | |
| progress_bar_st=None, | |
| ): | |
| height, width = self.check_resize_height_width(height, width) | |
| # Tiler parameters | |
| tiler_kwargs = {"tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride} | |
| # Prepare scheduler | |
| self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength) | |
| # Prepare latent tensors | |
| noise = self.generate_noise((1, 16, num_frames // 4 + 1, height//8, width//8), seed=seed, device="cpu", dtype=self.torch_dtype) | |
| if denoising_strength == 1.0: | |
| latents = noise.clone() | |
| else: | |
| input_video = self.preprocess_images(input_video) | |
| input_video = torch.stack(input_video, dim=2) | |
| latents = self.vae_encoder.encode_video(input_video, **tiler_kwargs, progress_bar=progress_bar_cmd).to(dtype=self.torch_dtype) | |
| latents = self.scheduler.add_noise(latents, noise, self.scheduler.timesteps[0]) | |
| if not tiled: latents = latents.to(self.device) | |
| # Encode prompt | |
| prompt_emb_posi = self.encode_prompt(prompt, positive=True) | |
| if cfg_scale != 1.0: | |
| prompt_emb_nega = self.encode_prompt(negative_prompt, positive=False) | |
| # Extra input | |
| extra_input = self.prepare_extra_input(latents) | |
| # Denoise | |
| for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
| timestep = timestep.unsqueeze(0).to(self.device) | |
| # Classifier-free guidance | |
| noise_pred_posi = self.dit( | |
| latents, timestep=timestep, **prompt_emb_posi, **tiler_kwargs, **extra_input | |
| ) | |
| if cfg_scale != 1.0: | |
| noise_pred_nega = self.dit( | |
| latents, timestep=timestep, **prompt_emb_nega, **tiler_kwargs, **extra_input | |
| ) | |
| noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
| else: | |
| noise_pred = noise_pred_posi | |
| # DDIM | |
| latents = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], latents) | |
| # Update progress bar | |
| if progress_bar_st is not None: | |
| progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
| # Decode image | |
| video = self.vae_decoder.decode_video(latents.to("cpu"), **tiler_kwargs, progress_bar=progress_bar_cmd) | |
| video = self.tensor2video(video[0]) | |
| return video | |
