Spaces:
Sleeping
Sleeping
jayasuriyaK
commited on
Commit
•
c2770a4
1
Parent(s):
c2429ef
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,17 @@
|
|
1 |
#run the app
|
2 |
#python -m streamlit run d:/NSFW/Project/test1.py
|
3 |
import torch
|
4 |
-
from transformers import
|
|
|
5 |
import math, keras_ocr
|
6 |
# Initialize pipeline
|
7 |
pipeline = None
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
12 |
import streamlit as st
|
13 |
|
14 |
def get_distance(predictions):
|
@@ -102,14 +105,17 @@ if uploaded_file is not None:
|
|
102 |
sentance = ' '.join(ordered_preds)
|
103 |
#st.write(sentance)
|
104 |
|
105 |
-
|
106 |
print(text)
|
107 |
-
inputs = tokenizer(text,padding = True, truncation = True, return_tensors='pt').to('cpu')
|
108 |
outputs = model_2(**inputs)
|
109 |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
110 |
-
predictions = predictions.cpu().detach().numpy()
|
|
|
|
|
|
|
111 |
print(predictions[0][0],predictions[0][1])
|
112 |
-
if predictions[0][
|
113 |
print('safe')
|
114 |
st.write('Safe for Work')
|
115 |
else:
|
|
|
1 |
#run the app
|
2 |
#python -m streamlit run d:/NSFW/Project/test1.py
|
3 |
import torch
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
5 |
+
#from transformers import BertTokenizer, BertForSequenceClassification
|
6 |
import math, keras_ocr
|
7 |
# Initialize pipeline
|
8 |
pipeline = None
|
9 |
+
model_path="NSFW_text_classifier"
|
10 |
+
#tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
11 |
+
#model_2 = BertForSequenceClassification.from_pretrained("CustomModel")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
14 |
+
#model_2.to('cpu')
|
15 |
import streamlit as st
|
16 |
|
17 |
def get_distance(predictions):
|
|
|
105 |
sentance = ' '.join(ordered_preds)
|
106 |
#st.write(sentance)
|
107 |
|
108 |
+
input_text =sentance
|
109 |
print(text)
|
110 |
+
"""inputs = tokenizer(text,padding = True, truncation = True, return_tensors='pt').to('cpu')
|
111 |
outputs = model_2(**inputs)
|
112 |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
113 |
+
predictions = predictions.cpu().detach().numpy()"""
|
114 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
115 |
+
outputs = model(**inputs)
|
116 |
+
predictions = outputs.logits.softmax(dim=-1)
|
117 |
print(predictions[0][0],predictions[0][1])
|
118 |
+
if predictions[0][1]>predictions[0][0]:
|
119 |
print('safe')
|
120 |
st.write('Safe for Work')
|
121 |
else:
|