Spaces:
Runtime error
Runtime error
Create wav2vec2.py
Browse files- wav2vec2.py +1499 -0
wav2vec2.py
ADDED
@@ -0,0 +1,1499 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the MIT license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
import math
|
7 |
+
from dataclasses import dataclass, field
|
8 |
+
from typing import List, Tuple
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
import torch.nn as nn
|
13 |
+
import torch.nn.functional as F
|
14 |
+
|
15 |
+
from fairseq import utils
|
16 |
+
from fairseq.data.data_utils import compute_mask_indices
|
17 |
+
from fairseq.dataclass import ChoiceEnum, FairseqDataclass
|
18 |
+
from fairseq.distributed import fsdp_wrap
|
19 |
+
from fairseq.models import BaseFairseqModel, register_model
|
20 |
+
from fairseq.distributed.fully_sharded_data_parallel import FullyShardedDataParallel
|
21 |
+
from fairseq.modules import (
|
22 |
+
Fp32GroupNorm,
|
23 |
+
Fp32LayerNorm,
|
24 |
+
GradMultiply,
|
25 |
+
GumbelVectorQuantizer,
|
26 |
+
LayerNorm,
|
27 |
+
MultiheadAttention,
|
28 |
+
RelPositionalEncoding,
|
29 |
+
SamePad,
|
30 |
+
TransposeLast,
|
31 |
+
)
|
32 |
+
from fairseq.modules.checkpoint_activations import checkpoint_wrapper
|
33 |
+
from fairseq.modules.conformer_layer import ConformerWav2Vec2EncoderLayer
|
34 |
+
from fairseq.modules.transformer_sentence_encoder import init_bert_params
|
35 |
+
from fairseq.utils import buffered_arange, index_put, is_xla_tensor
|
36 |
+
|
37 |
+
from fairseq.models.wav2vec.utils import pad_to_multiple
|
38 |
+
|
39 |
+
EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"])
|
40 |
+
MASKING_DISTRIBUTION_CHOICES = ChoiceEnum(["static", "uniform", "normal", "poisson"])
|
41 |
+
LAYER_TYPE_CHOICES = ChoiceEnum(["transformer", "conformer", "trf_adp"])
|
42 |
+
|
43 |
+
|
44 |
+
@dataclass
|
45 |
+
class Wav2Vec2Config(FairseqDataclass):
|
46 |
+
extractor_mode: EXTRACTOR_MODE_CHOICES = field(
|
47 |
+
default="default",
|
48 |
+
metadata={
|
49 |
+
"help": "mode for feature extractor. default has a single group norm with d "
|
50 |
+
"groups in the first conv block, whereas layer_norm has layer norms in "
|
51 |
+
"every block (meant to use with normalize=True)"
|
52 |
+
},
|
53 |
+
)
|
54 |
+
encoder_layers: int = field(
|
55 |
+
default=12, metadata={"help": "num encoder layers in the transformer"}
|
56 |
+
)
|
57 |
+
encoder_embed_dim: int = field(
|
58 |
+
default=768, metadata={"help": "encoder embedding dimension"}
|
59 |
+
)
|
60 |
+
encoder_ffn_embed_dim: int = field(
|
61 |
+
default=3072, metadata={"help": "encoder embedding dimension for FFN"}
|
62 |
+
)
|
63 |
+
encoder_attention_heads: int = field(
|
64 |
+
default=12, metadata={"help": "num encoder attention heads"}
|
65 |
+
)
|
66 |
+
activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field(
|
67 |
+
default="gelu", metadata={"help": "activation function to use"}
|
68 |
+
)
|
69 |
+
layer_type: LAYER_TYPE_CHOICES = field(
|
70 |
+
default="transformer", metadata={"help": "layer type in encoder"}
|
71 |
+
)
|
72 |
+
# dropouts
|
73 |
+
dropout: float = field(
|
74 |
+
default=0.1, metadata={"help": "dropout probability for the transformer"}
|
75 |
+
)
|
76 |
+
attention_dropout: float = field(
|
77 |
+
default=0.1, metadata={"help": "dropout probability for attention weights"}
|
78 |
+
)
|
79 |
+
activation_dropout: float = field(
|
80 |
+
default=0.0, metadata={"help": "dropout probability after activation in FFN"}
|
81 |
+
)
|
82 |
+
encoder_layerdrop: float = field(
|
83 |
+
default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"}
|
84 |
+
)
|
85 |
+
dropout_input: float = field(
|
86 |
+
default=0.0,
|
87 |
+
metadata={"help": "dropout to apply to the input (after feat extr)"},
|
88 |
+
)
|
89 |
+
dropout_features: float = field(
|
90 |
+
default=0.0,
|
91 |
+
metadata={"help": "dropout to apply to the features (after feat extr)"},
|
92 |
+
)
|
93 |
+
|
94 |
+
final_dim: int = field(
|
95 |
+
default=0,
|
96 |
+
metadata={
|
97 |
+
"help": "project final representations and targets to this many dimensions."
|
98 |
+
"set to encoder_embed_dim is <= 0"
|
99 |
+
},
|
100 |
+
)
|
101 |
+
layer_norm_first: bool = field(
|
102 |
+
default=False, metadata={"help": "apply layernorm first in the transformer"}
|
103 |
+
)
|
104 |
+
input_feature_ndim: int = field(
|
105 |
+
default=40,
|
106 |
+
metadata={"help": "number of mfcc/fbank feature dimensions, e.g. 40"}
|
107 |
+
)
|
108 |
+
conv_feature_layers: str = field(
|
109 |
+
default="[(512, 10, 5)] + [(512, 3, 2)] * 4 + [(512,2,2)] + [(512,2,2)]",
|
110 |
+
metadata={
|
111 |
+
"help": "string describing convolutional feature extraction layers in form of a python list that contains "
|
112 |
+
"[(dim, kernel_size, stride), ...]"
|
113 |
+
},
|
114 |
+
)
|
115 |
+
conv_bias: bool = field(
|
116 |
+
default=False, metadata={"help": "include bias in conv encoder"}
|
117 |
+
)
|
118 |
+
logit_temp: float = field(
|
119 |
+
default=0.1, metadata={"help": "temperature to divide logits by"}
|
120 |
+
)
|
121 |
+
quantize_targets: bool = field(
|
122 |
+
default=False, metadata={"help": "use quantized targets"}
|
123 |
+
)
|
124 |
+
quantize_input: bool = field(
|
125 |
+
default=False, metadata={"help": "use quantized inputs"}
|
126 |
+
)
|
127 |
+
same_quantizer: bool = field(
|
128 |
+
default=False, metadata={"help": "use same quantizer for inputs and targets"}
|
129 |
+
)
|
130 |
+
target_glu: bool = field(
|
131 |
+
default=False, metadata={"help": "adds projection + glu to targets"}
|
132 |
+
)
|
133 |
+
feature_grad_mult: float = field(
|
134 |
+
default=1.0, metadata={"help": "multiply feature extractor var grads by this"}
|
135 |
+
)
|
136 |
+
quantizer_depth: int = field(
|
137 |
+
default=1,
|
138 |
+
metadata={"help": "number of quantizer layers"},
|
139 |
+
)
|
140 |
+
quantizer_factor: int = field(
|
141 |
+
default=3,
|
142 |
+
metadata={
|
143 |
+
"help": "dimensionality increase for inner quantizer layers (if depth > 1)"
|
144 |
+
},
|
145 |
+
)
|
146 |
+
latent_vars: int = field(
|
147 |
+
default=320,
|
148 |
+
metadata={"help": "number of latent variables V in each group of the codebook"},
|
149 |
+
)
|
150 |
+
latent_groups: int = field(
|
151 |
+
default=2,
|
152 |
+
metadata={"help": "number of groups G of latent variables in the codebook"},
|
153 |
+
)
|
154 |
+
latent_dim: int = field(
|
155 |
+
default=0,
|
156 |
+
metadata={
|
157 |
+
"help": "if > 0, uses this dimensionality for latent variables. "
|
158 |
+
"otherwise uses final_dim / latent_groups"
|
159 |
+
},
|
160 |
+
)
|
161 |
+
|
162 |
+
# masking
|
163 |
+
mask_length: int = field(default=10, metadata={"help": "mask length"})
|
164 |
+
mask_prob: float = field(
|
165 |
+
default=0.65, metadata={"help": "probability of replacing a token with mask"}
|
166 |
+
)
|
167 |
+
mask_selection: MASKING_DISTRIBUTION_CHOICES = field(
|
168 |
+
default="static", metadata={"help": "how to choose mask length"}
|
169 |
+
)
|
170 |
+
mask_other: float = field(
|
171 |
+
default=0,
|
172 |
+
metadata={
|
173 |
+
"help": "secondary mask argument (used for more complex distributions), "
|
174 |
+
"see help in compute_mask_indices"
|
175 |
+
},
|
176 |
+
)
|
177 |
+
no_mask_overlap: bool = field(
|
178 |
+
default=False, metadata={"help": "whether to allow masks to overlap"}
|
179 |
+
)
|
180 |
+
mask_min_space: int = field(
|
181 |
+
default=1,
|
182 |
+
metadata={"help": "min space between spans (if no overlap is enabled)"},
|
183 |
+
)
|
184 |
+
require_same_masks: bool = field(
|
185 |
+
default=True,
|
186 |
+
metadata={
|
187 |
+
"help": "whether to number of masked timesteps must be the same across all "
|
188 |
+
"examples in a batch"
|
189 |
+
},
|
190 |
+
)
|
191 |
+
mask_dropout: float = field(
|
192 |
+
default=0.0,
|
193 |
+
metadata={"help": "percent of masks to unmask for each sample"},
|
194 |
+
)
|
195 |
+
|
196 |
+
# channel masking
|
197 |
+
mask_channel_length: int = field(
|
198 |
+
default=10, metadata={"help": "length of the mask for features (channels)"}
|
199 |
+
)
|
200 |
+
mask_channel_prob: float = field(
|
201 |
+
default=0.0, metadata={"help": "probability of replacing a feature with 0"}
|
202 |
+
)
|
203 |
+
mask_channel_before: bool = False
|
204 |
+
mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field(
|
205 |
+
default="static",
|
206 |
+
metadata={"help": "how to choose mask length for channel masking"},
|
207 |
+
)
|
208 |
+
mask_channel_other: float = field(
|
209 |
+
default=0,
|
210 |
+
metadata={
|
211 |
+
"help": "secondary mask argument (used for more complex distributions), "
|
212 |
+
"see help in compute_mask_indicesh"
|
213 |
+
},
|
214 |
+
)
|
215 |
+
no_mask_channel_overlap: bool = field(
|
216 |
+
default=False, metadata={"help": "whether to allow channel masks to overlap"}
|
217 |
+
)
|
218 |
+
mask_channel_min_space: int = field(
|
219 |
+
default=1,
|
220 |
+
metadata={"help": "min space between spans (if no overlap is enabled)"},
|
221 |
+
)
|
222 |
+
|
223 |
+
# negative selection
|
224 |
+
num_negatives: int = field(
|
225 |
+
default=100,
|
226 |
+
metadata={"help": "number of negative examples from the same sample"},
|
227 |
+
)
|
228 |
+
negatives_from_everywhere: bool = field(
|
229 |
+
default=False,
|
230 |
+
metadata={"help": "sample negatives from everywhere, not just masked states"},
|
231 |
+
)
|
232 |
+
cross_sample_negatives: int = field(
|
233 |
+
default=0, metadata={"help": "number of negative examples from the any sample"}
|
234 |
+
)
|
235 |
+
codebook_negatives: int = field(
|
236 |
+
default=0, metadata={"help": "number of negative examples codebook"}
|
237 |
+
)
|
238 |
+
|
239 |
+
# positional embeddings
|
240 |
+
conv_pos: int = field(
|
241 |
+
default=128,
|
242 |
+
metadata={"help": "number of filters for convolutional positional embeddings"},
|
243 |
+
)
|
244 |
+
conv_pos_groups: int = field(
|
245 |
+
default=16,
|
246 |
+
metadata={"help": "number of groups for convolutional positional embedding"},
|
247 |
+
)
|
248 |
+
pos_conv_depth: int = field(
|
249 |
+
default=1,
|
250 |
+
metadata={"help": "depth of positional encoder network"},
|
251 |
+
)
|
252 |
+
|
253 |
+
latent_temp: Tuple[float, float, float] = field(
|
254 |
+
default=(2, 0.5, 0.999995),
|
255 |
+
metadata={
|
256 |
+
"help": "temperature for latent variable sampling. "
|
257 |
+
"can be tuple of 3 values (start, end, decay)"
|
258 |
+
},
|
259 |
+
)
|
260 |
+
max_positions: int = field(default=100000, metadata={"help": "Max positions"})
|
261 |
+
checkpoint_activations: bool = field(
|
262 |
+
default=False,
|
263 |
+
metadata={"help": "recompute activations and save memory for extra compute"},
|
264 |
+
)
|
265 |
+
|
266 |
+
# FP16 optimization
|
267 |
+
required_seq_len_multiple: int = field(
|
268 |
+
default=2,
|
269 |
+
metadata={
|
270 |
+
"help": "pad the input to encoder such that the sequence length is divisible by multiple"
|
271 |
+
},
|
272 |
+
)
|
273 |
+
crop_seq_to_multiple: int = field(
|
274 |
+
default=1,
|
275 |
+
metadata={
|
276 |
+
"help": "crop convolutional feature extractor output such that the sequence length is divisible by multiple"
|
277 |
+
},
|
278 |
+
)
|
279 |
+
|
280 |
+
# Conformer
|
281 |
+
depthwise_conv_kernel_size: int = field(
|
282 |
+
default=31,
|
283 |
+
metadata={
|
284 |
+
"help": "depthwise-conv-kernel-size for convolution in conformer layer"
|
285 |
+
},
|
286 |
+
)
|
287 |
+
attn_type: str = field(
|
288 |
+
default="",
|
289 |
+
metadata={"help": "if espnet use ESPNET MHA"},
|
290 |
+
)
|
291 |
+
pos_enc_type: str = field(
|
292 |
+
default="abs",
|
293 |
+
metadata={"help": "Positional encoding type to use in conformer"},
|
294 |
+
)
|
295 |
+
fp16: bool = field(default=False, metadata={"help": "If fp16 is being used"})
|
296 |
+
|
297 |
+
# Adapter num
|
298 |
+
adp_num: int = field(
|
299 |
+
default=-1
|
300 |
+
)
|
301 |
+
adp_dim: int = field(
|
302 |
+
default=64
|
303 |
+
)
|
304 |
+
adp_act_fn: str = field(
|
305 |
+
default="relu"
|
306 |
+
)
|
307 |
+
adp_trf_idx: str = field(
|
308 |
+
default="all",
|
309 |
+
)
|
310 |
+
|
311 |
+
|
312 |
+
@register_model("wav2vec2", dataclass=Wav2Vec2Config)
|
313 |
+
class Wav2Vec2Model(BaseFairseqModel):
|
314 |
+
def __init__(self, cfg: Wav2Vec2Config):
|
315 |
+
super().__init__()
|
316 |
+
self.cfg = cfg
|
317 |
+
|
318 |
+
feature_enc_layers = eval(cfg.conv_feature_layers)
|
319 |
+
self.embed = feature_enc_layers[-1][0]
|
320 |
+
|
321 |
+
self.feature_extractor = ConvFeatureExtractionModel(
|
322 |
+
conv_layers=feature_enc_layers,
|
323 |
+
dropout=0.0,
|
324 |
+
mode=cfg.extractor_mode,
|
325 |
+
conv_bias=cfg.conv_bias,
|
326 |
+
input_feature_ndim=cfg.input_feature_ndim
|
327 |
+
)
|
328 |
+
|
329 |
+
self.post_extract_proj = (
|
330 |
+
nn.Linear(self.embed, cfg.encoder_embed_dim)
|
331 |
+
if self.embed != cfg.encoder_embed_dim and not cfg.quantize_input
|
332 |
+
else None
|
333 |
+
)
|
334 |
+
|
335 |
+
self.crop_seq_to_multiple = cfg.crop_seq_to_multiple
|
336 |
+
|
337 |
+
self.mask_prob = cfg.mask_prob
|
338 |
+
self.mask_selection = cfg.mask_selection
|
339 |
+
self.mask_other = cfg.mask_other
|
340 |
+
self.mask_length = cfg.mask_length
|
341 |
+
self.no_mask_overlap = cfg.no_mask_overlap
|
342 |
+
self.mask_min_space = cfg.mask_min_space
|
343 |
+
|
344 |
+
self.mask_channel_prob = cfg.mask_channel_prob
|
345 |
+
self.mask_channel_before = cfg.mask_channel_before
|
346 |
+
self.mask_channel_selection = cfg.mask_channel_selection
|
347 |
+
self.mask_channel_other = cfg.mask_channel_other
|
348 |
+
self.mask_channel_length = cfg.mask_channel_length
|
349 |
+
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
|
350 |
+
self.mask_channel_min_space = cfg.mask_channel_min_space
|
351 |
+
|
352 |
+
self.dropout_input = nn.Dropout(cfg.dropout_input)
|
353 |
+
self.dropout_features = nn.Dropout(cfg.dropout_features)
|
354 |
+
|
355 |
+
self.feature_grad_mult = cfg.feature_grad_mult
|
356 |
+
|
357 |
+
self.quantizer = None
|
358 |
+
self.input_quantizer = None
|
359 |
+
|
360 |
+
self.n_negatives = cfg.num_negatives
|
361 |
+
self.cross_sample_negatives = cfg.cross_sample_negatives
|
362 |
+
self.codebook_negatives = cfg.codebook_negatives
|
363 |
+
self.negatives_from_everywhere = cfg.negatives_from_everywhere
|
364 |
+
|
365 |
+
self.logit_temp = cfg.logit_temp
|
366 |
+
|
367 |
+
final_dim = cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim
|
368 |
+
|
369 |
+
if cfg.quantize_targets:
|
370 |
+
vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else final_dim
|
371 |
+
self.quantizer = GumbelVectorQuantizer(
|
372 |
+
dim=self.embed,
|
373 |
+
num_vars=cfg.latent_vars,
|
374 |
+
temp=cfg.latent_temp,
|
375 |
+
groups=cfg.latent_groups,
|
376 |
+
combine_groups=False,
|
377 |
+
vq_dim=vq_dim,
|
378 |
+
time_first=True,
|
379 |
+
weight_proj_depth=cfg.quantizer_depth,
|
380 |
+
weight_proj_factor=cfg.quantizer_factor,
|
381 |
+
)
|
382 |
+
self.project_q = nn.Linear(vq_dim, final_dim)
|
383 |
+
else:
|
384 |
+
self.project_q = nn.Linear(self.embed, final_dim)
|
385 |
+
|
386 |
+
if cfg.quantize_input:
|
387 |
+
if cfg.same_quantizer and self.quantizer is not None:
|
388 |
+
vq_dim = final_dim
|
389 |
+
self.input_quantizer = self.quantizer
|
390 |
+
else:
|
391 |
+
vq_dim = cfg.latent_dim if cfg.latent_dim > 0 else cfg.encoder_embed_dim
|
392 |
+
self.input_quantizer = GumbelVectorQuantizer(
|
393 |
+
dim=self.embed,
|
394 |
+
num_vars=cfg.latent_vars,
|
395 |
+
temp=cfg.latent_temp,
|
396 |
+
groups=cfg.latent_groups,
|
397 |
+
combine_groups=False,
|
398 |
+
vq_dim=vq_dim,
|
399 |
+
time_first=True,
|
400 |
+
weight_proj_depth=cfg.quantizer_depth,
|
401 |
+
weight_proj_factor=cfg.quantizer_factor,
|
402 |
+
)
|
403 |
+
self.project_inp = nn.Linear(vq_dim, cfg.encoder_embed_dim)
|
404 |
+
|
405 |
+
self.mask_emb = nn.Parameter(
|
406 |
+
torch.FloatTensor(cfg.encoder_embed_dim).uniform_()
|
407 |
+
)
|
408 |
+
encoder_cls = TransformerEncoder
|
409 |
+
if cfg.layer_type == "conformer" and cfg.pos_enc_type in ["rel_pos", "rope"]:
|
410 |
+
encoder_cls = ConformerEncoder
|
411 |
+
|
412 |
+
self.encoder = encoder_cls(cfg)
|
413 |
+
self.layer_norm = LayerNorm(self.embed)
|
414 |
+
|
415 |
+
self.target_glu = None
|
416 |
+
if cfg.target_glu:
|
417 |
+
self.target_glu = nn.Sequential(
|
418 |
+
nn.Linear(final_dim, final_dim * 2), nn.GLU()
|
419 |
+
)
|
420 |
+
|
421 |
+
self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim)
|
422 |
+
|
423 |
+
def upgrade_state_dict_named(self, state_dict, name):
|
424 |
+
super().upgrade_state_dict_named(state_dict, name)
|
425 |
+
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
|
426 |
+
return state_dict
|
427 |
+
|
428 |
+
@classmethod
|
429 |
+
def build_model(cls, cfg: Wav2Vec2Config, task=None):
|
430 |
+
"""Build a new model instance."""
|
431 |
+
|
432 |
+
return cls(cfg)
|
433 |
+
|
434 |
+
def apply_mask(
|
435 |
+
self,
|
436 |
+
x,
|
437 |
+
padding_mask,
|
438 |
+
mask_indices=None,
|
439 |
+
mask_channel_indices=None,
|
440 |
+
):
|
441 |
+
B, T, C = x.shape
|
442 |
+
|
443 |
+
if self.mask_channel_prob > 0 and self.mask_channel_before:
|
444 |
+
mask_channel_indices = compute_mask_indices(
|
445 |
+
(B, C),
|
446 |
+
None,
|
447 |
+
self.mask_channel_prob,
|
448 |
+
self.mask_channel_length,
|
449 |
+
self.mask_channel_selection,
|
450 |
+
self.mask_channel_other,
|
451 |
+
no_overlap=self.no_mask_channel_overlap,
|
452 |
+
min_space=self.mask_channel_min_space,
|
453 |
+
)
|
454 |
+
mask_channel_indices = (
|
455 |
+
torch.from_numpy(mask_channel_indices)
|
456 |
+
.to(x.device)
|
457 |
+
.unsqueeze(1)
|
458 |
+
.expand(-1, T, -1)
|
459 |
+
)
|
460 |
+
x[mask_channel_indices] = 0
|
461 |
+
|
462 |
+
if self.mask_prob > 0:
|
463 |
+
if mask_indices is None:
|
464 |
+
mask_indices = compute_mask_indices(
|
465 |
+
(B, T),
|
466 |
+
padding_mask,
|
467 |
+
self.mask_prob,
|
468 |
+
self.mask_length,
|
469 |
+
self.mask_selection,
|
470 |
+
self.mask_other,
|
471 |
+
min_masks=2,
|
472 |
+
no_overlap=self.no_mask_overlap,
|
473 |
+
min_space=self.mask_min_space,
|
474 |
+
require_same_masks=self.cfg.require_same_masks,
|
475 |
+
mask_dropout=self.cfg.mask_dropout,
|
476 |
+
)
|
477 |
+
mask_indices = torch.from_numpy(mask_indices).to(x.device)
|
478 |
+
x = index_put(x, mask_indices, self.mask_emb)
|
479 |
+
else:
|
480 |
+
mask_indices = None
|
481 |
+
|
482 |
+
if self.mask_channel_prob > 0 and not self.mask_channel_before:
|
483 |
+
if mask_channel_indices is None:
|
484 |
+
mask_channel_indices = compute_mask_indices(
|
485 |
+
(B, C),
|
486 |
+
None,
|
487 |
+
self.mask_channel_prob,
|
488 |
+
self.mask_channel_length,
|
489 |
+
self.mask_channel_selection,
|
490 |
+
self.mask_channel_other,
|
491 |
+
no_overlap=self.no_mask_channel_overlap,
|
492 |
+
min_space=self.mask_channel_min_space,
|
493 |
+
)
|
494 |
+
mask_channel_indices = (
|
495 |
+
torch.from_numpy(mask_channel_indices)
|
496 |
+
.to(x.device)
|
497 |
+
.unsqueeze(1)
|
498 |
+
.expand(-1, T, -1)
|
499 |
+
)
|
500 |
+
x = index_put(x, mask_channel_indices, 0)
|
501 |
+
|
502 |
+
return x, mask_indices
|
503 |
+
|
504 |
+
def sample_negatives(self, y, num, padding_count=None):
|
505 |
+
|
506 |
+
if self.n_negatives == 0 and self.cross_sample_negatives == 0:
|
507 |
+
return y.new(0)
|
508 |
+
|
509 |
+
bsz, tsz, fsz = y.shape
|
510 |
+
y = y.view(-1, fsz) # BTC => (BxT)C
|
511 |
+
|
512 |
+
# FIXME: what happens if padding_count is specified?
|
513 |
+
cross_high = tsz * bsz
|
514 |
+
high = tsz - (padding_count or 0)
|
515 |
+
with torch.no_grad():
|
516 |
+
assert high > 1, f"{bsz,tsz,fsz}"
|
517 |
+
|
518 |
+
if self.n_negatives > 0:
|
519 |
+
tszs = (
|
520 |
+
buffered_arange(num)
|
521 |
+
.unsqueeze(-1)
|
522 |
+
.expand(-1, self.n_negatives)
|
523 |
+
.flatten()
|
524 |
+
)
|
525 |
+
|
526 |
+
neg_idxs = torch.randint(
|
527 |
+
low=0, high=high - 1, size=(bsz, self.n_negatives * num)
|
528 |
+
)
|
529 |
+
neg_idxs[neg_idxs >= tszs] += 1
|
530 |
+
|
531 |
+
if self.cross_sample_negatives > 0:
|
532 |
+
tszs = (
|
533 |
+
buffered_arange(num)
|
534 |
+
.unsqueeze(-1)
|
535 |
+
.expand(-1, self.cross_sample_negatives)
|
536 |
+
.flatten()
|
537 |
+
)
|
538 |
+
|
539 |
+
cross_neg_idxs = torch.randint(
|
540 |
+
low=0,
|
541 |
+
high=cross_high - 1,
|
542 |
+
size=(bsz, self.cross_sample_negatives * num),
|
543 |
+
)
|
544 |
+
cross_neg_idxs[cross_neg_idxs >= tszs] += 1
|
545 |
+
|
546 |
+
if self.n_negatives > 0:
|
547 |
+
neg_idxs = neg_idxs + (torch.arange(bsz).unsqueeze(1) * high)
|
548 |
+
else:
|
549 |
+
neg_idxs = cross_neg_idxs
|
550 |
+
|
551 |
+
if self.cross_sample_negatives > 0 and self.n_negatives > 0:
|
552 |
+
neg_idxs = torch.cat([neg_idxs, cross_neg_idxs], dim=1)
|
553 |
+
|
554 |
+
negs = y[neg_idxs.view(-1)]
|
555 |
+
negs = negs.view(
|
556 |
+
bsz, num, self.n_negatives + self.cross_sample_negatives, fsz
|
557 |
+
).permute(
|
558 |
+
2, 0, 1, 3
|
559 |
+
) # to NxBxTxC
|
560 |
+
return negs, neg_idxs
|
561 |
+
|
562 |
+
def compute_preds(self, x, y, negatives):
|
563 |
+
|
564 |
+
neg_is_pos = (y == negatives).all(-1)
|
565 |
+
y = y.unsqueeze(0)
|
566 |
+
targets = torch.cat([y, negatives], dim=0)
|
567 |
+
|
568 |
+
logits = torch.cosine_similarity(x.float(), targets.float(), dim=-1)
|
569 |
+
logits = logits / self.logit_temp
|
570 |
+
logits = logits.type_as(x)
|
571 |
+
|
572 |
+
if is_xla_tensor(logits) or neg_is_pos.any():
|
573 |
+
if not hasattr(self, "_inftensor"):
|
574 |
+
fillval = -float(2**30)
|
575 |
+
self._inftensor = (
|
576 |
+
torch.tensor(fillval).to(x.device)
|
577 |
+
if is_xla_tensor(logits)
|
578 |
+
else float("-inf")
|
579 |
+
)
|
580 |
+
logits[1:] = index_put(logits[1:], neg_is_pos, self._inftensor)
|
581 |
+
|
582 |
+
return logits
|
583 |
+
|
584 |
+
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
|
585 |
+
"""
|
586 |
+
Computes the output length of the convolutional layers
|
587 |
+
"""
|
588 |
+
|
589 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
590 |
+
return torch.floor((input_length - kernel_size) / stride + 1)
|
591 |
+
|
592 |
+
conv_cfg_list = eval(self.cfg.conv_feature_layers)
|
593 |
+
|
594 |
+
for i in range(len(conv_cfg_list)):
|
595 |
+
input_lengths = _conv_out_length(
|
596 |
+
input_lengths, conv_cfg_list[i][1], conv_cfg_list[i][2]
|
597 |
+
)
|
598 |
+
|
599 |
+
return input_lengths.to(torch.long)
|
600 |
+
|
601 |
+
def forward(
|
602 |
+
self,
|
603 |
+
source,
|
604 |
+
padding_mask=None,
|
605 |
+
mask=True,
|
606 |
+
features_only=False,
|
607 |
+
layer=None,
|
608 |
+
mask_indices=None,
|
609 |
+
mask_channel_indices=None,
|
610 |
+
padding_count=None,
|
611 |
+
corpus_key=None,
|
612 |
+
):
|
613 |
+
|
614 |
+
if self.feature_grad_mult > 0:
|
615 |
+
features = self.feature_extractor(source)
|
616 |
+
if self.feature_grad_mult != 1.0:
|
617 |
+
features = GradMultiply.apply(features, self.feature_grad_mult)
|
618 |
+
else:
|
619 |
+
with torch.no_grad():
|
620 |
+
features = self.feature_extractor(source)
|
621 |
+
|
622 |
+
features_pen = features.float().pow(2).mean()
|
623 |
+
|
624 |
+
features = features.transpose(1, 2)
|
625 |
+
features = self.layer_norm(features)
|
626 |
+
unmasked_features = features.clone()
|
627 |
+
|
628 |
+
if padding_mask is not None and padding_mask.any():
|
629 |
+
input_lengths = (1 - padding_mask.long()).sum(-1)
|
630 |
+
# apply conv formula to get real output_lengths
|
631 |
+
output_lengths = self._get_feat_extract_output_lengths(input_lengths)
|
632 |
+
|
633 |
+
padding_mask = torch.zeros(
|
634 |
+
features.shape[:2], dtype=features.dtype, device=features.device
|
635 |
+
)
|
636 |
+
|
637 |
+
# these two operations makes sure that all values
|
638 |
+
# before the output lengths indices are attended to
|
639 |
+
padding_mask[
|
640 |
+
(
|
641 |
+
torch.arange(padding_mask.shape[0], device=padding_mask.device),
|
642 |
+
output_lengths - 1,
|
643 |
+
)
|
644 |
+
] = 1
|
645 |
+
padding_mask = (1 - padding_mask.flip([-1]).cumsum(-1).flip([-1])).bool()
|
646 |
+
else:
|
647 |
+
padding_mask = None
|
648 |
+
|
649 |
+
time_steps_to_drop = features.size(1) % self.crop_seq_to_multiple
|
650 |
+
if time_steps_to_drop != 0:
|
651 |
+
features = features[:, :-time_steps_to_drop]
|
652 |
+
unmasked_features = unmasked_features[:, :-time_steps_to_drop]
|
653 |
+
if padding_mask is not None:
|
654 |
+
padding_mask = padding_mask[:, :-time_steps_to_drop]
|
655 |
+
|
656 |
+
if self.post_extract_proj is not None:
|
657 |
+
features = self.post_extract_proj(features)
|
658 |
+
|
659 |
+
features = self.dropout_input(features)
|
660 |
+
unmasked_features = self.dropout_features(unmasked_features)
|
661 |
+
|
662 |
+
num_vars = None
|
663 |
+
code_ppl = None
|
664 |
+
prob_ppl = None
|
665 |
+
curr_temp = None
|
666 |
+
|
667 |
+
if self.input_quantizer:
|
668 |
+
q = self.input_quantizer(features, produce_targets=False)
|
669 |
+
features = q["x"]
|
670 |
+
num_vars = q["num_vars"]
|
671 |
+
code_ppl = q["code_perplexity"]
|
672 |
+
prob_ppl = q["prob_perplexity"]
|
673 |
+
curr_temp = q["temp"]
|
674 |
+
features = self.project_inp(features)
|
675 |
+
|
676 |
+
if mask:
|
677 |
+
x, mask_indices = self.apply_mask(
|
678 |
+
features,
|
679 |
+
padding_mask,
|
680 |
+
mask_indices=mask_indices,
|
681 |
+
mask_channel_indices=mask_channel_indices,
|
682 |
+
)
|
683 |
+
if not is_xla_tensor(x) and mask_indices is not None:
|
684 |
+
# tpu-comment: reducing the size in a dynamic way causes
|
685 |
+
# too many recompilations on xla.
|
686 |
+
y = unmasked_features[mask_indices].view(
|
687 |
+
unmasked_features.size(0), -1, unmasked_features.size(-1)
|
688 |
+
)
|
689 |
+
else:
|
690 |
+
y = unmasked_features
|
691 |
+
else:
|
692 |
+
x = features
|
693 |
+
y = unmasked_features
|
694 |
+
mask_indices = None
|
695 |
+
|
696 |
+
x, layer_results = self.encoder(
|
697 |
+
x, padding_mask=padding_mask, layer=layer, corpus_key=corpus_key
|
698 |
+
)
|
699 |
+
|
700 |
+
if features_only:
|
701 |
+
return {
|
702 |
+
"x": x,
|
703 |
+
"padding_mask": padding_mask,
|
704 |
+
"features": unmasked_features,
|
705 |
+
"layer_results": layer_results,
|
706 |
+
}
|
707 |
+
|
708 |
+
if self.quantizer:
|
709 |
+
if self.negatives_from_everywhere:
|
710 |
+
q = self.quantizer(unmasked_features, produce_targets=False)
|
711 |
+
y = q["x"]
|
712 |
+
num_vars = q["num_vars"]
|
713 |
+
code_ppl = q["code_perplexity"]
|
714 |
+
prob_ppl = q["prob_perplexity"]
|
715 |
+
curr_temp = q["temp"]
|
716 |
+
y = self.project_q(y)
|
717 |
+
|
718 |
+
negs, _ = self.sample_negatives(
|
719 |
+
y,
|
720 |
+
mask_indices[0].sum(),
|
721 |
+
padding_count=padding_count,
|
722 |
+
)
|
723 |
+
y = y[mask_indices].view(y.size(0), -1, y.size(-1))
|
724 |
+
|
725 |
+
else:
|
726 |
+
q = self.quantizer(y, produce_targets=False)
|
727 |
+
y = q["x"]
|
728 |
+
num_vars = q["num_vars"]
|
729 |
+
code_ppl = q["code_perplexity"]
|
730 |
+
prob_ppl = q["prob_perplexity"]
|
731 |
+
curr_temp = q["temp"]
|
732 |
+
|
733 |
+
y = self.project_q(y)
|
734 |
+
|
735 |
+
negs, _ = self.sample_negatives(
|
736 |
+
y,
|
737 |
+
y.size(1),
|
738 |
+
padding_count=padding_count,
|
739 |
+
)
|
740 |
+
|
741 |
+
if self.codebook_negatives > 0:
|
742 |
+
cb_negs = self.quantizer.sample_from_codebook(
|
743 |
+
y.size(0) * y.size(1), self.codebook_negatives
|
744 |
+
)
|
745 |
+
cb_negs = cb_negs.view(
|
746 |
+
self.codebook_negatives, y.size(0), y.size(1), -1
|
747 |
+
) # order doesnt matter
|
748 |
+
cb_negs = self.project_q(cb_negs)
|
749 |
+
negs = torch.cat([negs, cb_negs], dim=0)
|
750 |
+
else:
|
751 |
+
y = self.project_q(y)
|
752 |
+
|
753 |
+
if self.negatives_from_everywhere:
|
754 |
+
negs, _ = self.sample_negatives(
|
755 |
+
unmasked_features,
|
756 |
+
y.size(1),
|
757 |
+
padding_count=padding_count,
|
758 |
+
)
|
759 |
+
negs = self.project_q(negs)
|
760 |
+
else:
|
761 |
+
negs, _ = self.sample_negatives(
|
762 |
+
y,
|
763 |
+
y.size(1),
|
764 |
+
padding_count=padding_count,
|
765 |
+
)
|
766 |
+
|
767 |
+
if not is_xla_tensor(x):
|
768 |
+
# tpu-comment: reducing the size in a dynamic way causes
|
769 |
+
# too many recompilations on xla.
|
770 |
+
x = x[mask_indices].view(x.size(0), -1, x.size(-1))
|
771 |
+
|
772 |
+
if self.target_glu:
|
773 |
+
y = self.target_glu(y)
|
774 |
+
negs = self.target_glu(negs)
|
775 |
+
|
776 |
+
x = self.final_proj(x)
|
777 |
+
x = self.compute_preds(x, y, negs)
|
778 |
+
|
779 |
+
result = {
|
780 |
+
"x": x,
|
781 |
+
"padding_mask": padding_mask,
|
782 |
+
"features_pen": features_pen,
|
783 |
+
}
|
784 |
+
|
785 |
+
if prob_ppl is not None:
|
786 |
+
result["prob_perplexity"] = prob_ppl
|
787 |
+
result["code_perplexity"] = code_ppl
|
788 |
+
result["num_vars"] = num_vars
|
789 |
+
result["temp"] = curr_temp
|
790 |
+
|
791 |
+
return result
|
792 |
+
|
793 |
+
def quantize(self, x):
|
794 |
+
assert self.quantizer is not None
|
795 |
+
x = self.feature_extractor(x)
|
796 |
+
x = x.transpose(1, 2)
|
797 |
+
x = self.layer_norm(x)
|
798 |
+
return self.quantizer.forward_idx(x)
|
799 |
+
|
800 |
+
def extract_features(
|
801 |
+
self, source, padding_mask, mask=False, layer=None, corpus_key=None
|
802 |
+
):
|
803 |
+
res = self.forward(
|
804 |
+
source,
|
805 |
+
padding_mask,
|
806 |
+
mask=mask,
|
807 |
+
features_only=True,
|
808 |
+
layer=layer,
|
809 |
+
corpus_key=corpus_key,
|
810 |
+
)
|
811 |
+
return res
|
812 |
+
|
813 |
+
def get_logits(self, net_output):
|
814 |
+
logits = net_output["x"]
|
815 |
+
logits = logits.transpose(0, 2)
|
816 |
+
logits = logits.reshape(-1, logits.size(-1))
|
817 |
+
return logits
|
818 |
+
|
819 |
+
def get_targets(self, sample, net_output, expand_steps=True):
|
820 |
+
x = net_output["x"]
|
821 |
+
return x.new_zeros(x.size(1) * x.size(2), dtype=torch.long)
|
822 |
+
|
823 |
+
def get_extra_losses(self, net_output):
|
824 |
+
pen = []
|
825 |
+
|
826 |
+
if "prob_perplexity" in net_output:
|
827 |
+
pen.append(
|
828 |
+
(net_output["num_vars"] - net_output["prob_perplexity"])
|
829 |
+
/ net_output["num_vars"]
|
830 |
+
)
|
831 |
+
|
832 |
+
if "features_pen" in net_output:
|
833 |
+
pen.append(net_output["features_pen"])
|
834 |
+
|
835 |
+
return pen
|
836 |
+
|
837 |
+
def remove_pretraining_modules(self, last_layer=None):
|
838 |
+
self.quantizer = None
|
839 |
+
self.project_q = None
|
840 |
+
self.target_glu = None
|
841 |
+
self.final_proj = None
|
842 |
+
|
843 |
+
if last_layer is not None:
|
844 |
+
self.encoder.layers = nn.ModuleList(
|
845 |
+
l for i, l in enumerate(self.encoder.layers) if i <= last_layer
|
846 |
+
)
|
847 |
+
|
848 |
+
|
849 |
+
class ConvFeatureExtractionModel(nn.Module):
|
850 |
+
def __init__(
|
851 |
+
self,
|
852 |
+
conv_layers: List[Tuple[int, int, int]],
|
853 |
+
dropout: float = 0.0,
|
854 |
+
mode: str = "default",
|
855 |
+
conv_bias: bool = False,
|
856 |
+
input_feature_ndim: int = 40
|
857 |
+
):
|
858 |
+
super().__init__()
|
859 |
+
|
860 |
+
assert mode in {"default", "layer_norm"}
|
861 |
+
|
862 |
+
def block(
|
863 |
+
n_in,
|
864 |
+
n_out,
|
865 |
+
k,
|
866 |
+
stride,
|
867 |
+
is_layer_norm=False,
|
868 |
+
is_group_norm=False,
|
869 |
+
conv_bias=False,
|
870 |
+
):
|
871 |
+
def make_conv():
|
872 |
+
conv = nn.Conv1d(n_in, n_out, k, stride=stride, bias=conv_bias)
|
873 |
+
nn.init.kaiming_normal_(conv.weight)
|
874 |
+
return conv
|
875 |
+
|
876 |
+
assert (
|
877 |
+
is_layer_norm and is_group_norm
|
878 |
+
) == False, "layer norm and group norm are exclusive"
|
879 |
+
|
880 |
+
if is_layer_norm:
|
881 |
+
return nn.Sequential(
|
882 |
+
make_conv(),
|
883 |
+
nn.Dropout(p=dropout),
|
884 |
+
nn.Sequential(
|
885 |
+
TransposeLast(),
|
886 |
+
Fp32LayerNorm(dim, elementwise_affine=True),
|
887 |
+
TransposeLast(),
|
888 |
+
),
|
889 |
+
nn.GELU(),
|
890 |
+
)
|
891 |
+
elif is_group_norm:
|
892 |
+
return nn.Sequential(
|
893 |
+
make_conv(),
|
894 |
+
nn.Dropout(p=dropout),
|
895 |
+
Fp32GroupNorm(dim, dim, affine=True),
|
896 |
+
nn.GELU(),
|
897 |
+
)
|
898 |
+
else:
|
899 |
+
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
|
900 |
+
|
901 |
+
in_d = input_feature_ndim
|
902 |
+
self.conv_layers = nn.ModuleList()
|
903 |
+
for i, cl in enumerate(conv_layers):
|
904 |
+
assert len(cl) == 3, "invalid conv definition: " + str(cl)
|
905 |
+
(dim, k, stride) = cl
|
906 |
+
|
907 |
+
self.conv_layers.append(
|
908 |
+
block(
|
909 |
+
in_d,
|
910 |
+
dim,
|
911 |
+
k,
|
912 |
+
stride,
|
913 |
+
is_layer_norm=mode == "layer_norm",
|
914 |
+
is_group_norm=mode == "default" and i == 0,
|
915 |
+
conv_bias=conv_bias,
|
916 |
+
)
|
917 |
+
)
|
918 |
+
in_d = dim
|
919 |
+
|
920 |
+
def forward(self, x):
|
921 |
+
|
922 |
+
# BxTxC -> BxCxT
|
923 |
+
#x = x.unsqueeze(1)
|
924 |
+
x = x.permute([0,2,1])
|
925 |
+
|
926 |
+
for conv in self.conv_layers:
|
927 |
+
x = conv(x)
|
928 |
+
|
929 |
+
return x
|
930 |
+
|
931 |
+
|
932 |
+
def make_conv_pos(e, k, g, is_batch_norm=False):
|
933 |
+
pos_conv = nn.Conv1d(
|
934 |
+
e,
|
935 |
+
e,
|
936 |
+
kernel_size=k,
|
937 |
+
padding=k // 2,
|
938 |
+
groups=g,
|
939 |
+
)
|
940 |
+
dropout = 0
|
941 |
+
std = math.sqrt((4 * (1.0 - dropout)) / (k * e))
|
942 |
+
nn.init.normal_(pos_conv.weight, mean=0, std=std)
|
943 |
+
nn.init.constant_(pos_conv.bias, 0)
|
944 |
+
|
945 |
+
if not is_batch_norm:
|
946 |
+
pos_conv = nn.utils.weight_norm(pos_conv, name="weight", dim=2)
|
947 |
+
pos_conv = nn.Sequential(pos_conv, SamePad(k), nn.GELU())
|
948 |
+
else:
|
949 |
+
batch_norm = nn.BatchNorm1d(e)
|
950 |
+
pos_conv = nn.Sequential(batch_norm, pos_conv, SamePad(k), nn.GELU())
|
951 |
+
|
952 |
+
return pos_conv
|
953 |
+
|
954 |
+
|
955 |
+
class TransformerEncoder(nn.Module):
|
956 |
+
def build_encoder_layer(self, args: Wav2Vec2Config, **kwargs):
|
957 |
+
if args.layer_type == "transformer":
|
958 |
+
layer = TransformerSentenceEncoderLayer(
|
959 |
+
embedding_dim=self.embedding_dim,
|
960 |
+
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
961 |
+
num_attention_heads=args.encoder_attention_heads,
|
962 |
+
dropout=self.dropout,
|
963 |
+
attention_dropout=args.attention_dropout,
|
964 |
+
activation_dropout=args.activation_dropout,
|
965 |
+
activation_fn=args.activation_fn,
|
966 |
+
layer_norm_first=args.layer_norm_first,
|
967 |
+
)
|
968 |
+
elif args.layer_type == "conformer":
|
969 |
+
layer = ConformerWav2Vec2EncoderLayer(
|
970 |
+
embed_dim=self.embedding_dim,
|
971 |
+
ffn_embed_dim=args.encoder_ffn_embed_dim,
|
972 |
+
attention_heads=args.encoder_attention_heads,
|
973 |
+
dropout=args.dropout,
|
974 |
+
depthwise_conv_kernel_size=args.depthwise_conv_kernel_size,
|
975 |
+
activation_fn="swish",
|
976 |
+
attn_type=args.attn_type,
|
977 |
+
use_fp16=args.fp16,
|
978 |
+
pos_enc_type="abs",
|
979 |
+
)
|
980 |
+
elif args.layer_type == "trf_adp":
|
981 |
+
use_adp = False
|
982 |
+
if args.adp_trf_idx == "all":
|
983 |
+
use_adp = True
|
984 |
+
else:
|
985 |
+
adp_trf_idx = list(range(*[int(g) for g in args.adp_trf_idx.split(":")]))
|
986 |
+
if kwargs.get("layer_idx", None) in adp_trf_idx:
|
987 |
+
use_adp = True
|
988 |
+
if use_adp:
|
989 |
+
layer = TransformerSentenceEncoderWithAdapterLayer(
|
990 |
+
embedding_dim=self.embedding_dim,
|
991 |
+
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
992 |
+
num_attention_heads=args.encoder_attention_heads,
|
993 |
+
dropout=self.dropout,
|
994 |
+
attention_dropout=args.attention_dropout,
|
995 |
+
activation_dropout=args.activation_dropout,
|
996 |
+
activation_fn=args.activation_fn,
|
997 |
+
layer_norm_first=args.layer_norm_first,
|
998 |
+
adapter_num=args.adp_num,
|
999 |
+
adapter_dim=args.adp_dim,
|
1000 |
+
adapter_act_fn=args.adp_act_fn,
|
1001 |
+
)
|
1002 |
+
else:
|
1003 |
+
layer = TransformerSentenceEncoderLayer(
|
1004 |
+
embedding_dim=self.embedding_dim,
|
1005 |
+
ffn_embedding_dim=args.encoder_ffn_embed_dim,
|
1006 |
+
num_attention_heads=args.encoder_attention_heads,
|
1007 |
+
dropout=self.dropout,
|
1008 |
+
attention_dropout=args.attention_dropout,
|
1009 |
+
activation_dropout=args.activation_dropout,
|
1010 |
+
activation_fn=args.activation_fn,
|
1011 |
+
layer_norm_first=args.layer_norm_first,
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
layer = fsdp_wrap(layer)
|
1015 |
+
if args.checkpoint_activations:
|
1016 |
+
layer = checkpoint_wrapper(layer)
|
1017 |
+
return layer
|
1018 |
+
|
1019 |
+
def __init__(self, args: Wav2Vec2Config):
|
1020 |
+
super().__init__()
|
1021 |
+
|
1022 |
+
self.dropout = args.dropout
|
1023 |
+
self.embedding_dim = args.encoder_embed_dim
|
1024 |
+
self.required_seq_len_multiple = args.required_seq_len_multiple
|
1025 |
+
|
1026 |
+
pos_conv_depth = getattr(args, "pos_conv_depth", 1)
|
1027 |
+
if pos_conv_depth > 1:
|
1028 |
+
num_layers = args.pos_conv_depth
|
1029 |
+
k = max(3, args.conv_pos // num_layers)
|
1030 |
+
|
1031 |
+
def make_conv_block(e, k, g, l):
|
1032 |
+
return nn.Sequential(
|
1033 |
+
*[
|
1034 |
+
nn.Sequential(
|
1035 |
+
nn.Conv1d(
|
1036 |
+
e,
|
1037 |
+
e,
|
1038 |
+
kernel_size=k,
|
1039 |
+
padding=k // 2,
|
1040 |
+
groups=g,
|
1041 |
+
),
|
1042 |
+
SamePad(k),
|
1043 |
+
TransposeLast(),
|
1044 |
+
LayerNorm(e, elementwise_affine=False),
|
1045 |
+
TransposeLast(),
|
1046 |
+
nn.GELU(),
|
1047 |
+
)
|
1048 |
+
for _ in range(l)
|
1049 |
+
]
|
1050 |
+
)
|
1051 |
+
|
1052 |
+
self.pos_conv = make_conv_block(
|
1053 |
+
self.embedding_dim, k, args.conv_pos_groups, num_layers
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
else:
|
1057 |
+
self.pos_conv = make_conv_pos(
|
1058 |
+
self.embedding_dim,
|
1059 |
+
args.conv_pos,
|
1060 |
+
args.conv_pos_groups,
|
1061 |
+
is_batch_norm=args.conv_pos_batch_norm
|
1062 |
+
if hasattr(args, "conv_pos_batch_norm")
|
1063 |
+
else False,
|
1064 |
+
)
|
1065 |
+
|
1066 |
+
self.layers = nn.ModuleList(
|
1067 |
+
[self.build_encoder_layer(args, layer_idx=ii) for ii in range(args.encoder_layers)]
|
1068 |
+
)
|
1069 |
+
self.layer_norm_first = args.layer_norm_first
|
1070 |
+
self.layer_norm = LayerNorm(self.embedding_dim)
|
1071 |
+
self.layerdrop = args.encoder_layerdrop
|
1072 |
+
|
1073 |
+
self.apply(init_bert_params)
|
1074 |
+
|
1075 |
+
def forward(self, x, padding_mask=None, layer=None, corpus_key=None):
|
1076 |
+
x, layer_results = self.extract_features(
|
1077 |
+
x, padding_mask, layer, corpus_key=corpus_key
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
if self.layer_norm_first and layer is None:
|
1081 |
+
x = self.layer_norm(x)
|
1082 |
+
|
1083 |
+
return x, layer_results
|
1084 |
+
|
1085 |
+
def extract_features(
|
1086 |
+
self,
|
1087 |
+
x,
|
1088 |
+
padding_mask=None,
|
1089 |
+
tgt_layer=None,
|
1090 |
+
min_layer=0,
|
1091 |
+
corpus_key=None,
|
1092 |
+
):
|
1093 |
+
|
1094 |
+
if padding_mask is not None:
|
1095 |
+
x = index_put(x, padding_mask, 0)
|
1096 |
+
|
1097 |
+
x_conv = self.pos_conv(x.transpose(1, 2))
|
1098 |
+
x_conv = x_conv.transpose(1, 2)
|
1099 |
+
x = x + x_conv
|
1100 |
+
|
1101 |
+
if not self.layer_norm_first:
|
1102 |
+
x = self.layer_norm(x)
|
1103 |
+
|
1104 |
+
# pad to the sequence length dimension
|
1105 |
+
x, pad_length = pad_to_multiple(
|
1106 |
+
x, self.required_seq_len_multiple, dim=-2, value=0
|
1107 |
+
)
|
1108 |
+
if pad_length > 0 and padding_mask is None:
|
1109 |
+
padding_mask = x.new_zeros((x.size(0), x.size(1)), dtype=torch.bool)
|
1110 |
+
padding_mask[:, -pad_length:] = True
|
1111 |
+
else:
|
1112 |
+
padding_mask, _ = pad_to_multiple(
|
1113 |
+
padding_mask, self.required_seq_len_multiple, dim=-1, value=True
|
1114 |
+
)
|
1115 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
1116 |
+
|
1117 |
+
# B x T x C -> T x B x C
|
1118 |
+
x = x.transpose(0, 1)
|
1119 |
+
|
1120 |
+
layer_results = []
|
1121 |
+
r = None
|
1122 |
+
|
1123 |
+
for i, layer in enumerate(self.layers):
|
1124 |
+
dropout_probability = np.random.random() if self.layerdrop > 0 else 1
|
1125 |
+
if not self.training or (dropout_probability > self.layerdrop):
|
1126 |
+
layer_check = layer
|
1127 |
+
if isinstance(layer, FullyShardedDataParallel):
|
1128 |
+
layer_check = layer.unwrapped_module
|
1129 |
+
if (corpus_key is None) or (
|
1130 |
+
not isinstance(layer_check, (
|
1131 |
+
TransformerSentenceEncoderWithAdapterLayer,
|
1132 |
+
)
|
1133 |
+
)
|
1134 |
+
):
|
1135 |
+
x, (z, lr) = layer(
|
1136 |
+
x, self_attn_padding_mask=padding_mask, need_weights=False
|
1137 |
+
)
|
1138 |
+
else:
|
1139 |
+
x, (z, lr) = layer(
|
1140 |
+
x,
|
1141 |
+
self_attn_padding_mask=padding_mask,
|
1142 |
+
need_weights=False,
|
1143 |
+
corpus_key=corpus_key,
|
1144 |
+
)
|
1145 |
+
if i >= min_layer:
|
1146 |
+
layer_results.append((x, z, lr))
|
1147 |
+
if i == tgt_layer:
|
1148 |
+
r = x
|
1149 |
+
break
|
1150 |
+
|
1151 |
+
if r is not None:
|
1152 |
+
x = r
|
1153 |
+
|
1154 |
+
# T x B x C -> B x T x C
|
1155 |
+
x = x.transpose(0, 1)
|
1156 |
+
|
1157 |
+
# undo paddding
|
1158 |
+
if pad_length > 0:
|
1159 |
+
x = x[:, :-pad_length]
|
1160 |
+
|
1161 |
+
def undo_pad(a, b, c):
|
1162 |
+
return (
|
1163 |
+
a[:-pad_length],
|
1164 |
+
b[:-pad_length] if b is not None else b,
|
1165 |
+
c[:-pad_length],
|
1166 |
+
)
|
1167 |
+
|
1168 |
+
layer_results = [undo_pad(*u) for u in layer_results]
|
1169 |
+
|
1170 |
+
return x, layer_results
|
1171 |
+
|
1172 |
+
def max_positions(self):
|
1173 |
+
"""Maximum output length supported by the encoder."""
|
1174 |
+
return self.args.max_positions
|
1175 |
+
|
1176 |
+
def upgrade_state_dict_named(self, state_dict, name):
|
1177 |
+
"""Upgrade a (possibly old) state dict for new versions of fairseq."""
|
1178 |
+
return state_dict
|
1179 |
+
|
1180 |
+
|
1181 |
+
class ConformerEncoder(TransformerEncoder):
|
1182 |
+
def build_encoder_layer(self, args):
|
1183 |
+
layer = ConformerWav2Vec2EncoderLayer(
|
1184 |
+
embed_dim=self.embedding_dim,
|
1185 |
+
ffn_embed_dim=args.encoder_ffn_embed_dim,
|
1186 |
+
attention_heads=args.encoder_attention_heads,
|
1187 |
+
dropout=args.dropout,
|
1188 |
+
depthwise_conv_kernel_size=args.depthwise_conv_kernel_size,
|
1189 |
+
activation_fn="swish",
|
1190 |
+
attn_type=args.attn_type,
|
1191 |
+
pos_enc_type=args.pos_enc_type,
|
1192 |
+
use_fp16=args.fp16, # only used for rope
|
1193 |
+
)
|
1194 |
+
layer = fsdp_wrap(layer)
|
1195 |
+
if args.checkpoint_activations:
|
1196 |
+
layer = checkpoint_wrapper(layer)
|
1197 |
+
return layer
|
1198 |
+
|
1199 |
+
def __init__(self, args):
|
1200 |
+
super().__init__(args)
|
1201 |
+
self.args = args
|
1202 |
+
self.dropout = args.dropout
|
1203 |
+
self.embedding_dim = args.encoder_embed_dim
|
1204 |
+
self.pos_enc_type = args.pos_enc_type
|
1205 |
+
max_source_positions = self.max_positions()
|
1206 |
+
|
1207 |
+
if self.pos_enc_type == "rel_pos":
|
1208 |
+
self.embed_positions = RelPositionalEncoding(
|
1209 |
+
max_source_positions, self.embedding_dim
|
1210 |
+
)
|
1211 |
+
elif self.pos_enc_type == "rope":
|
1212 |
+
self.embed_positions = None
|
1213 |
+
else:
|
1214 |
+
raise Exception("Unsupported positional encoding type")
|
1215 |
+
|
1216 |
+
self.layers = nn.ModuleList(
|
1217 |
+
[self.build_encoder_layer(args) for _ in range(args.encoder_layers)]
|
1218 |
+
)
|
1219 |
+
self.layer_norm_first = args.layer_norm_first
|
1220 |
+
self.layer_norm = LayerNorm(self.embedding_dim)
|
1221 |
+
self.layerdrop = args.encoder_layerdrop
|
1222 |
+
|
1223 |
+
self.apply(init_bert_params)
|
1224 |
+
|
1225 |
+
def extract_features(self, x, padding_mask=None, tgt_layer=None):
|
1226 |
+
if padding_mask is not None:
|
1227 |
+
x = index_put(x, padding_mask, 0)
|
1228 |
+
|
1229 |
+
# B x T x C -> T x B x C
|
1230 |
+
x = x.transpose(0, 1)
|
1231 |
+
|
1232 |
+
# B X T X C here
|
1233 |
+
position_emb = None
|
1234 |
+
if self.pos_enc_type == "rel_pos":
|
1235 |
+
position_emb = self.embed_positions(x)
|
1236 |
+
|
1237 |
+
if not self.layer_norm_first:
|
1238 |
+
x = self.layer_norm(x)
|
1239 |
+
|
1240 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
1241 |
+
|
1242 |
+
layer_results = []
|
1243 |
+
r = None
|
1244 |
+
for i, layer in enumerate(self.layers):
|
1245 |
+
dropout_probability = np.random.random()
|
1246 |
+
if not self.training or (dropout_probability > self.layerdrop):
|
1247 |
+
x, z = layer(
|
1248 |
+
x,
|
1249 |
+
self_attn_padding_mask=padding_mask,
|
1250 |
+
need_weights=False,
|
1251 |
+
position_emb=position_emb,
|
1252 |
+
)
|
1253 |
+
if tgt_layer is not None:
|
1254 |
+
layer_results.append((x, z))
|
1255 |
+
if i == tgt_layer:
|
1256 |
+
r = x
|
1257 |
+
break
|
1258 |
+
|
1259 |
+
if r is not None:
|
1260 |
+
x = r
|
1261 |
+
|
1262 |
+
# T x B x C -> B x T x C
|
1263 |
+
x = x.transpose(0, 1)
|
1264 |
+
|
1265 |
+
return x, layer_results
|
1266 |
+
|
1267 |
+
|
1268 |
+
class TransformerSentenceEncoderLayer(nn.Module):
|
1269 |
+
"""
|
1270 |
+
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
|
1271 |
+
models.
|
1272 |
+
"""
|
1273 |
+
|
1274 |
+
def __init__(
|
1275 |
+
self,
|
1276 |
+
embedding_dim: float = 768,
|
1277 |
+
ffn_embedding_dim: float = 3072,
|
1278 |
+
num_attention_heads: int = 8,
|
1279 |
+
dropout: float = 0.1,
|
1280 |
+
attention_dropout: float = 0.1,
|
1281 |
+
activation_dropout: float = 0.1,
|
1282 |
+
activation_fn: str = "relu",
|
1283 |
+
layer_norm_first: bool = False,
|
1284 |
+
) -> None:
|
1285 |
+
|
1286 |
+
super().__init__()
|
1287 |
+
# Initialize parameters
|
1288 |
+
self.embedding_dim = embedding_dim
|
1289 |
+
self.dropout = dropout
|
1290 |
+
self.activation_dropout = activation_dropout
|
1291 |
+
|
1292 |
+
# Initialize blocks
|
1293 |
+
self.activation_fn = utils.get_activation_fn(activation_fn)
|
1294 |
+
self.self_attn = MultiheadAttention(
|
1295 |
+
self.embedding_dim,
|
1296 |
+
num_attention_heads,
|
1297 |
+
dropout=attention_dropout,
|
1298 |
+
self_attention=True,
|
1299 |
+
)
|
1300 |
+
|
1301 |
+
self.dropout1 = nn.Dropout(dropout)
|
1302 |
+
self.dropout2 = nn.Dropout(self.activation_dropout)
|
1303 |
+
self.dropout3 = nn.Dropout(dropout)
|
1304 |
+
|
1305 |
+
self.layer_norm_first = layer_norm_first
|
1306 |
+
|
1307 |
+
# layer norm associated with the self attention layer
|
1308 |
+
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
|
1309 |
+
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
|
1310 |
+
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
|
1311 |
+
|
1312 |
+
# layer norm associated with the position wise feed-forward NN
|
1313 |
+
self.final_layer_norm = LayerNorm(self.embedding_dim)
|
1314 |
+
|
1315 |
+
def forward(
|
1316 |
+
self,
|
1317 |
+
x: torch.Tensor,
|
1318 |
+
self_attn_mask: torch.Tensor = None,
|
1319 |
+
self_attn_padding_mask: torch.Tensor = None,
|
1320 |
+
need_weights: bool = False,
|
1321 |
+
att_args=None,
|
1322 |
+
):
|
1323 |
+
"""
|
1324 |
+
LayerNorm is applied either before or after the self-attention/ffn
|
1325 |
+
modules similar to the original Transformer imlementation.
|
1326 |
+
"""
|
1327 |
+
residual = x
|
1328 |
+
|
1329 |
+
if self.layer_norm_first:
|
1330 |
+
x = self.self_attn_layer_norm(x)
|
1331 |
+
x, attn = self.self_attn(
|
1332 |
+
query=x,
|
1333 |
+
key=x,
|
1334 |
+
value=x,
|
1335 |
+
key_padding_mask=self_attn_padding_mask,
|
1336 |
+
attn_mask=self_attn_mask,
|
1337 |
+
need_weights=False,
|
1338 |
+
)
|
1339 |
+
x = self.dropout1(x)
|
1340 |
+
x = residual + x
|
1341 |
+
|
1342 |
+
residual = x
|
1343 |
+
x = self.final_layer_norm(x)
|
1344 |
+
x = self.activation_fn(self.fc1(x))
|
1345 |
+
x = self.dropout2(x)
|
1346 |
+
x = self.fc2(x)
|
1347 |
+
|
1348 |
+
layer_result = x
|
1349 |
+
|
1350 |
+
x = self.dropout3(x)
|
1351 |
+
x = residual + x
|
1352 |
+
else:
|
1353 |
+
x, attn = self.self_attn(
|
1354 |
+
query=x,
|
1355 |
+
key=x,
|
1356 |
+
value=x,
|
1357 |
+
key_padding_mask=self_attn_padding_mask,
|
1358 |
+
need_weights=False,
|
1359 |
+
)
|
1360 |
+
|
1361 |
+
x = self.dropout1(x)
|
1362 |
+
x = residual + x
|
1363 |
+
|
1364 |
+
x = self.self_attn_layer_norm(x)
|
1365 |
+
|
1366 |
+
residual = x
|
1367 |
+
x = self.activation_fn(self.fc1(x))
|
1368 |
+
x = self.dropout2(x)
|
1369 |
+
x = self.fc2(x)
|
1370 |
+
|
1371 |
+
layer_result = x
|
1372 |
+
|
1373 |
+
x = self.dropout3(x)
|
1374 |
+
x = residual + x
|
1375 |
+
x = self.final_layer_norm(x)
|
1376 |
+
|
1377 |
+
return x, (attn, layer_result)
|
1378 |
+
|
1379 |
+
|
1380 |
+
class AdapterFast(nn.Module):
|
1381 |
+
def __init__(self, adapter_num, input_dim, hidden_dim, act_fn):
|
1382 |
+
"""
|
1383 |
+
Implements adapter modules directly with 3D tensor weight as parameters
|
1384 |
+
and without using ModuleList orto speed up training throughput.
|
1385 |
+
"""
|
1386 |
+
super().__init__()
|
1387 |
+
|
1388 |
+
self.adapter_num = adapter_num
|
1389 |
+
self.input_dim = input_dim
|
1390 |
+
self.hidden_dim = hidden_dim
|
1391 |
+
self.W_a = nn.Parameter(torch.empty(adapter_num, hidden_dim, input_dim))
|
1392 |
+
self.W_b = nn.Parameter(torch.empty(adapter_num, input_dim, hidden_dim))
|
1393 |
+
self.b_a = nn.Parameter(torch.empty(adapter_num, hidden_dim))
|
1394 |
+
self.b_b = nn.Parameter(torch.empty(adapter_num, input_dim))
|
1395 |
+
|
1396 |
+
self.ln_W = nn.Parameter(torch.empty(adapter_num, input_dim))
|
1397 |
+
self.ln_b = nn.Parameter(torch.empty(adapter_num, input_dim))
|
1398 |
+
self.act_fn = nn.Identity()
|
1399 |
+
if act_fn == "relu":
|
1400 |
+
self.act_fn = nn.ReLU()
|
1401 |
+
elif act_fn == "gelu":
|
1402 |
+
self.act_fn = nn.GELU()
|
1403 |
+
elif act_fn == "selu":
|
1404 |
+
self.act_fn = nn.SELU()
|
1405 |
+
else:
|
1406 |
+
raise ValueError(f"unsupported {act_fn}")
|
1407 |
+
|
1408 |
+
|
1409 |
+
self.input_dim = input_dim
|
1410 |
+
self.reset_parameters()
|
1411 |
+
|
1412 |
+
def reset_parameters(self):
|
1413 |
+
for ii in range(self.adapter_num):
|
1414 |
+
nn.init.kaiming_uniform_(self.W_a[ii], a=math.sqrt(5))
|
1415 |
+
nn.init.kaiming_uniform_(self.W_b[ii], a=math.sqrt(5))
|
1416 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_a[ii])
|
1417 |
+
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
|
1418 |
+
nn.init.uniform_(self.b_a[ii], -bound, bound)
|
1419 |
+
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.W_b[ii])
|
1420 |
+
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
|
1421 |
+
nn.init.uniform_(self.b_b[ii], -bound, bound)
|
1422 |
+
|
1423 |
+
nn.init.ones_(self.ln_W)
|
1424 |
+
nn.init.zeros_(self.ln_b)
|
1425 |
+
|
1426 |
+
def forward(self, x, adapter_id):
|
1427 |
+
ii = adapter_id
|
1428 |
+
h = x
|
1429 |
+
h = F.layer_norm(h, (self.input_dim, ), self.ln_W[ii], self.ln_b[ii])
|
1430 |
+
h = F.linear(h, self.W_a[ii], self.b_a[ii])
|
1431 |
+
h = self.act_fn(h)
|
1432 |
+
h = F.linear(h, self.W_b[ii], self.b_b[ii])
|
1433 |
+
outputs = h
|
1434 |
+
return outputs
|
1435 |
+
|
1436 |
+
def extra_repr(self):
|
1437 |
+
return ('adapter={}, input_dim={}, hidden_dim={}'.format(self.adapter_num, self.input_dim, self.hidden_dim))
|
1438 |
+
|
1439 |
+
|
1440 |
+
|
1441 |
+
class TransformerSentenceEncoderWithAdapterLayer(TransformerSentenceEncoderLayer):
|
1442 |
+
"""
|
1443 |
+
Implements a Transformer Encoder Layer with adapters used in BERT/XLM style pre-trained
|
1444 |
+
models. An adapter module is added along with vanilla Transformer module.
|
1445 |
+
"""
|
1446 |
+
|
1447 |
+
def __init__(
|
1448 |
+
self,
|
1449 |
+
embedding_dim: float = 768,
|
1450 |
+
ffn_embedding_dim: float = 3072,
|
1451 |
+
num_attention_heads: int = 8,
|
1452 |
+
dropout: float = 0.1,
|
1453 |
+
attention_dropout: float = 0.1,
|
1454 |
+
activation_dropout: float = 0.1,
|
1455 |
+
activation_fn: str = "relu",
|
1456 |
+
layer_norm_first: bool = False,
|
1457 |
+
adapter_num=201,
|
1458 |
+
adapter_dim=64,
|
1459 |
+
adapter_act_fn="relu",
|
1460 |
+
) -> None:
|
1461 |
+
|
1462 |
+
super().__init__(
|
1463 |
+
embedding_dim=embedding_dim,
|
1464 |
+
ffn_embedding_dim=ffn_embedding_dim,
|
1465 |
+
num_attention_heads=num_attention_heads,
|
1466 |
+
dropout=dropout,
|
1467 |
+
attention_dropout=attention_dropout,
|
1468 |
+
activation_dropout=activation_dropout,
|
1469 |
+
activation_fn=activation_fn,
|
1470 |
+
layer_norm_first=layer_norm_first,
|
1471 |
+
|
1472 |
+
)
|
1473 |
+
|
1474 |
+
self.adapter_num = adapter_num
|
1475 |
+
self.adapter_dim = adapter_dim
|
1476 |
+
self.adapter_layer = AdapterFast(adapter_num, self.embedding_dim, self.adapter_dim, adapter_act_fn)
|
1477 |
+
|
1478 |
+
def forward(
|
1479 |
+
self,
|
1480 |
+
x: torch.Tensor,
|
1481 |
+
self_attn_mask: torch.Tensor = None,
|
1482 |
+
self_attn_padding_mask: torch.Tensor = None,
|
1483 |
+
need_weights: bool = False,
|
1484 |
+
att_args=None,
|
1485 |
+
corpus_key=None,
|
1486 |
+
):
|
1487 |
+
|
1488 |
+
x, (attn, layer_result) = super().forward(
|
1489 |
+
x=x,
|
1490 |
+
self_attn_mask=self_attn_mask,
|
1491 |
+
self_attn_padding_mask=self_attn_padding_mask,
|
1492 |
+
need_weights=need_weights,
|
1493 |
+
att_args=att_args,
|
1494 |
+
)
|
1495 |
+
assert corpus_key is not None
|
1496 |
+
assert len(set(corpus_key)) == 1, f"corpus_key items are not same {corpus_key}"
|
1497 |
+
y = self.adapter_layer(x, corpus_key[0])
|
1498 |
+
x = x + y
|
1499 |
+
return x, (attn, layer_result)
|