Spaces:
Runtime error
Runtime error
from typing import List | |
import argparse | |
import gradio as gr | |
import torch | |
from threading import Thread | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer | |
) | |
import warnings | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model_path", type=str, default="") | |
parser.add_argument("--torch_dtype", type=str, default="bfloat16") | |
parser.add_argument("--server_name", type=str, default="127.0.0.1") | |
parser.add_argument("--server_port", type=int, default=7860) | |
args = parser.parse_args() | |
# init model torch dtype | |
torch_dtype = args.torch_dtype | |
if torch_dtype =="" or torch_dtype == "bfloat16": | |
torch_dtype = torch.bfloat16 | |
elif torch_dtype == "float32": | |
torch_dtype = torch.float32 | |
else: | |
raise ValueError(f"Invalid torch dtype: {torch_dtype}") | |
# init model and tokenizer | |
path = args.model_path | |
tokenizer = AutoTokenizer.from_pretrained(path) | |
model = AutoModelForCausalLM.from_pretrained(path, torch_dtype=torch_dtype, device_map="auto", trust_remote_code=True) | |
# init gradio demo host and port | |
server_name=args.server_name | |
server_port=args.server_port | |
def hf_gen(dialog: List, top_p: float, temperature: float, max_dec_len: int): | |
"""generate model output with huggingface api | |
Args: | |
query (str): actual model input. | |
top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. | |
temperature (float): Strictly positive float value used to modulate the logits distribution. | |
max_dec_len (int): The maximum numbers of tokens to generate. | |
Yields: | |
str: real-time generation results of hf model | |
""" | |
inputs = tokenizer.apply_chat_template(dialog, tokenize=False, add_generation_prompt=False) | |
enc = tokenizer(inputs, return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer) | |
generation_kwargs = dict( | |
enc, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
max_new_tokens=max_dec_len, | |
pad_token_id=tokenizer.eos_token_id, | |
streamer=streamer, | |
) | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
answer = "" | |
for new_text in streamer: | |
answer += new_text | |
yield answer[4 + len(inputs):] | |
def generate(chat_history: List, query: str, top_p: float, temperature: float, max_dec_len: int): | |
"""generate after hitting "submit" button | |
Args: | |
chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records | |
query (str): query of current round | |
top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. | |
temperature (float): strictly positive float value used to modulate the logits distribution. | |
max_dec_len (int): The maximum numbers of tokens to generate. | |
Yields: | |
List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n], [q_n+1, a_n+1]]. chat_history + QA of current round. | |
""" | |
assert query != "", "Input must not be empty!!!" | |
# apply chat template | |
model_input = [] | |
for q, a in chat_history: | |
model_input.append({"role": "user", "content": q}) | |
model_input.append({"role": "assistant", "content": a}) | |
model_input.append({"role": "user", "content": query}) | |
# yield model generation | |
chat_history.append([query, ""]) | |
for answer in hf_gen(model_input, top_p, temperature, max_dec_len): | |
chat_history[-1][1] = answer.strip("</s>") | |
yield gr.update(value=""), chat_history | |
def regenerate(chat_history: List, top_p: float, temperature: float, max_dec_len: int): | |
"""re-generate the answer of last round's query | |
Args: | |
chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records | |
top_p (float): only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation. | |
temperature (float): strictly positive float value used to modulate the logits distribution. | |
max_dec_len (int): The maximum numbers of tokens to generate. | |
Yields: | |
List: [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. chat_history | |
""" | |
assert len(chat_history) >= 1, "History is empty. Nothing to regenerate!!" | |
# apply chat template | |
model_input = [] | |
for q, a in chat_history[:-1]: | |
model_input.append({"role": "user", "content": q}) | |
model_input.append({"role": "assistant", "content": a}) | |
model_input.append({"role": "user", "content": chat_history[-1][0]}) | |
# yield model generation | |
for answer in hf_gen(model_input, top_p, temperature, max_dec_len): | |
chat_history[-1][1] = answer.strip("</s>") | |
yield gr.update(value=""), chat_history | |
def clear_history(): | |
"""clear all chat history | |
Returns: | |
List: empty chat history | |
""" | |
return [] | |
def reverse_last_round(chat_history): | |
"""reverse last round QA and keep the chat history before | |
Args: | |
chat_history (List): [[q_1, a_1], [q_2, a_2], ..., [q_n, a_n]]. list that stores all QA records | |
Returns: | |
List: [[q_1, a_1], [q_2, a_2], ..., [q_n-1, a_n-1]]. chat_history without last round. | |
""" | |
assert len(chat_history) >= 1, "History is empty. Nothing to reverse!!" | |
return chat_history[:-1] | |
# launch gradio demo | |
with gr.Blocks(theme="soft") as demo: | |
gr.Markdown("""# MiniCPM Gradio Demo""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
top_p = gr.Slider(0, 1, value=0.8, step=0.1, label="top_p") | |
temperature = gr.Slider(0.1, 2.0, value=0.8, step=0.1, label="temperature") | |
max_dec_len = gr.Slider(1, 1024, value=1024, step=1, label="max_dec_len") | |
with gr.Column(scale=5): | |
chatbot = gr.Chatbot(bubble_full_width=False, height=400) | |
user_input = gr.Textbox(label="User", placeholder="Input your query here!", lines=8) | |
with gr.Row(): | |
submit = gr.Button("Submit") | |
clear = gr.Button("Clear") | |
regen = gr.Button("Regenerate") | |
reverse = gr.Button("Reverse") | |
submit.click(generate, inputs=[chatbot, user_input, top_p, temperature, max_dec_len], outputs=[user_input, chatbot]) | |
regen.click(regenerate, inputs=[chatbot, top_p, temperature, max_dec_len], outputs=[user_input, chatbot]) | |
clear.click(clear_history, inputs=[], outputs=[chatbot]) | |
reverse.click(reverse_last_round, inputs=[chatbot], outputs=[chatbot]) | |
demo.queue() | |
demo.launch(server_name=server_name, server_port=server_port, show_error=True, share=True) | |