Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .env +8 -0
- .github/PULL_REQUEST_TEMPLATE.md +30 -0
- .github/workflows/docker.yml +70 -0
- .github/workflows/genlocale.yml +33 -0
- .github/workflows/pull_format.yml +38 -0
- .github/workflows/push_format.yml +56 -0
- .github/workflows/unitest.yml +36 -0
- .gitignore +23 -0
- Dockerfile +29 -0
- GUI.py +1410 -0
- LICENSE +23 -0
- MIT协议暨相关引用库协议 +45 -0
- README.md +34 -8
- Retrieval_based_Voice_Conversion_WebUI.ipynb +403 -0
- Retrieval_based_Voice_Conversion_WebUI_v2.ipynb +422 -0
- a.png +0 -0
- app.py +1441 -0
- assets/hubert/.gitignore +2 -0
- assets/hubert/hubert_base.pt +3 -0
- assets/pretrained/.gitignore +2 -0
- assets/pretrained_v2/.gitignore +2 -0
- assets/pretrained_v2/D40k.pth +3 -0
- assets/pretrained_v2/G40k.pth +3 -0
- assets/pretrained_v2/f0D40k.pth +3 -0
- assets/pretrained_v2/f0G40k.pth +3 -0
- assets/rmvpe/.gitignore +2 -0
- assets/rmvpe/rmvpe.pt +3 -0
- assets/uvr5_weights/.gitignore +2 -0
- assets/weights/.gitignore +2 -0
- assets/weights/MJV2.pth +3 -0
- assets/weights/MJV2_e100_s100.pth +3 -0
- assets/weights/MJV2_e120_s120.pth +3 -0
- assets/weights/MJV2_e140_s140.pth +3 -0
- assets/weights/MJV2_e160_s160.pth +3 -0
- assets/weights/MJV2_e180_s180.pth +3 -0
- assets/weights/MJV2_e200_s200.pth +3 -0
- assets/weights/MJV2_e20_s20.pth +3 -0
- assets/weights/MJV2_e220_s220.pth +3 -0
- assets/weights/MJV2_e240_s240.pth +3 -0
- assets/weights/MJV2_e260_s260.pth +3 -0
- assets/weights/MJV2_e280_s280.pth +3 -0
- assets/weights/MJV2_e300_s300.pth +3 -0
- assets/weights/MJV2_e40_s40.pth +3 -0
- assets/weights/MJV2_e60_s60.pth +3 -0
- assets/weights/MJV2_e80_s80.pth +3 -0
- audios/somegirl.mp3 +0 -0
- audios/someguy.mp3 +0 -0
- audios/unachica.mp3 +0 -0
- audios/unchico.mp3 +0 -0
- configs/__pycache__/config.cpython-310.pyc +0 -0
.env
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OPENBLAS_NUM_THREADS = 1
|
2 |
+
no_proxy = localhost, 127.0.0.1, ::1
|
3 |
+
|
4 |
+
# You can change the location of the model, etc. by changing here
|
5 |
+
weight_root = assets/weights
|
6 |
+
weight_uvr5_root = assets/uvr5_weights
|
7 |
+
index_root = logs
|
8 |
+
rmvpe_root = assets/rmvpe
|
.github/PULL_REQUEST_TEMPLATE.md
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Pull request checklist
|
2 |
+
|
3 |
+
- [ ] The PR has a proper title. Use [Semantic Commit Messages](https://seesparkbox.com/foundry/semantic_commit_messages). (No more branch-name title please)
|
4 |
+
- [ ] Make sure you are requesting the right branch.
|
5 |
+
- [ ] Make sure this is ready to be merged into the relevant branch. Please don't create a PR and let it hang for a few days.
|
6 |
+
- [ ] Ensure all tests are passing.
|
7 |
+
- [ ] Ensure linting is passing.
|
8 |
+
|
9 |
+
# PR type
|
10 |
+
|
11 |
+
- Bug fix / new feature / chore
|
12 |
+
|
13 |
+
# Description
|
14 |
+
|
15 |
+
- Describe what this pull request is for.
|
16 |
+
- What will it affect.
|
17 |
+
|
18 |
+
# Screenshot
|
19 |
+
|
20 |
+
- Please include a screenshot if applicable
|
21 |
+
|
22 |
+
# Localhost url to test on
|
23 |
+
|
24 |
+
- Please include a url on localhost to test.
|
25 |
+
|
26 |
+
# Jira Link
|
27 |
+
|
28 |
+
- Please include a link to the ticket if applicable.
|
29 |
+
|
30 |
+
[Ticket]()
|
.github/workflows/docker.yml
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Build And Push Docker Image
|
2 |
+
|
3 |
+
on:
|
4 |
+
workflow_dispatch:
|
5 |
+
push:
|
6 |
+
# Sequence of patterns matched against refs/tags
|
7 |
+
tags:
|
8 |
+
- 'v*' # Push events to matching v*, i.e. v1.0, v20.15.10
|
9 |
+
|
10 |
+
jobs:
|
11 |
+
build:
|
12 |
+
runs-on: ubuntu-latest
|
13 |
+
permissions:
|
14 |
+
packages: write
|
15 |
+
contents: read
|
16 |
+
steps:
|
17 |
+
- uses: actions/checkout@v3
|
18 |
+
- name: Set time zone
|
19 |
+
uses: szenius/set-timezone@v1.0
|
20 |
+
with:
|
21 |
+
timezoneLinux: "Asia/Shanghai"
|
22 |
+
timezoneMacos: "Asia/Shanghai"
|
23 |
+
timezoneWindows: "China Standard Time"
|
24 |
+
|
25 |
+
# # 如果有 dockerhub 账户,可以在github的secrets中配置下面两个,然后取消下面注释的这几行,并在meta步骤的images增加一行 ${{ github.repository }}
|
26 |
+
# - name: Login to DockerHub
|
27 |
+
# uses: docker/login-action@v1
|
28 |
+
# with:
|
29 |
+
# username: ${{ secrets.DOCKERHUB_USERNAME }}
|
30 |
+
# password: ${{ secrets.DOCKERHUB_TOKEN }}
|
31 |
+
|
32 |
+
- name: Login to GHCR
|
33 |
+
uses: docker/login-action@v2
|
34 |
+
with:
|
35 |
+
registry: ghcr.io
|
36 |
+
username: ${{ github.repository_owner }}
|
37 |
+
password: ${{ secrets.GITHUB_TOKEN }}
|
38 |
+
|
39 |
+
- name: Extract metadata (tags, labels) for Docker
|
40 |
+
id: meta
|
41 |
+
uses: docker/metadata-action@v4
|
42 |
+
with:
|
43 |
+
images: |
|
44 |
+
ghcr.io/${{ github.repository }}
|
45 |
+
# generate Docker tags based on the following events/attributes
|
46 |
+
# nightly, master, pr-2, 1.2.3, 1.2, 1
|
47 |
+
tags: |
|
48 |
+
type=schedule,pattern=nightly
|
49 |
+
type=edge
|
50 |
+
type=ref,event=branch
|
51 |
+
type=ref,event=pr
|
52 |
+
type=semver,pattern={{version}}
|
53 |
+
type=semver,pattern={{major}}.{{minor}}
|
54 |
+
type=semver,pattern={{major}}
|
55 |
+
|
56 |
+
- name: Set up QEMU
|
57 |
+
uses: docker/setup-qemu-action@v2
|
58 |
+
|
59 |
+
- name: Set up Docker Buildx
|
60 |
+
uses: docker/setup-buildx-action@v2
|
61 |
+
|
62 |
+
- name: Build and push
|
63 |
+
id: docker_build
|
64 |
+
uses: docker/build-push-action@v4
|
65 |
+
with:
|
66 |
+
context: .
|
67 |
+
platforms: linux/amd64,linux/arm64
|
68 |
+
push: true
|
69 |
+
tags: ${{ steps.meta.outputs.tags }}
|
70 |
+
labels: ${{ steps.meta.outputs.labels }}
|
.github/workflows/genlocale.yml
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: genlocale
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
branches:
|
5 |
+
- main
|
6 |
+
jobs:
|
7 |
+
genlocale:
|
8 |
+
name: genlocale
|
9 |
+
runs-on: ubuntu-latest
|
10 |
+
steps:
|
11 |
+
- name: Check out
|
12 |
+
uses: actions/checkout@master
|
13 |
+
|
14 |
+
- name: Run locale generation
|
15 |
+
run: |
|
16 |
+
python3 i18n/scan_i18n.py
|
17 |
+
cd i18n
|
18 |
+
python3 locale_diff.py
|
19 |
+
|
20 |
+
- name: Commit back
|
21 |
+
if: ${{ !github.head_ref }}
|
22 |
+
continue-on-error: true
|
23 |
+
run: |
|
24 |
+
git config --local user.name 'github-actions[bot]'
|
25 |
+
git config --local user.email 'github-actions[bot]@users.noreply.github.com'
|
26 |
+
git add --all
|
27 |
+
git commit -m "🎨 同步 locale"
|
28 |
+
|
29 |
+
- name: Create Pull Request
|
30 |
+
if: ${{ !github.head_ref }}
|
31 |
+
continue-on-error: true
|
32 |
+
uses: peter-evans/create-pull-request@v4
|
33 |
+
|
.github/workflows/pull_format.yml
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: pull format
|
2 |
+
|
3 |
+
on: [pull_request]
|
4 |
+
|
5 |
+
permissions:
|
6 |
+
contents: write
|
7 |
+
|
8 |
+
jobs:
|
9 |
+
pull_format:
|
10 |
+
runs-on: ${{ matrix.os }}
|
11 |
+
|
12 |
+
strategy:
|
13 |
+
matrix:
|
14 |
+
python-version: ["3.10"]
|
15 |
+
os: [ubuntu-latest]
|
16 |
+
fail-fast: false
|
17 |
+
|
18 |
+
continue-on-error: true
|
19 |
+
|
20 |
+
steps:
|
21 |
+
- name: checkout
|
22 |
+
continue-on-error: true
|
23 |
+
uses: actions/checkout@v3
|
24 |
+
with:
|
25 |
+
ref: ${{ github.head_ref }}
|
26 |
+
fetch-depth: 0
|
27 |
+
|
28 |
+
- name: Set up Python ${{ matrix.python-version }}
|
29 |
+
uses: actions/setup-python@v4
|
30 |
+
with:
|
31 |
+
python-version: ${{ matrix.python-version }}
|
32 |
+
|
33 |
+
- name: Install Black
|
34 |
+
run: pip install "black[jupyter]"
|
35 |
+
|
36 |
+
- name: Run Black
|
37 |
+
# run: black $(git ls-files '*.py')
|
38 |
+
run: black .
|
.github/workflows/push_format.yml
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: push format
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
|
8 |
+
permissions:
|
9 |
+
contents: write
|
10 |
+
pull-requests: write
|
11 |
+
|
12 |
+
jobs:
|
13 |
+
push_format:
|
14 |
+
runs-on: ${{ matrix.os }}
|
15 |
+
|
16 |
+
strategy:
|
17 |
+
matrix:
|
18 |
+
python-version: ["3.10"]
|
19 |
+
os: [ubuntu-latest]
|
20 |
+
fail-fast: false
|
21 |
+
|
22 |
+
steps:
|
23 |
+
- uses: actions/checkout@v3
|
24 |
+
with:
|
25 |
+
ref: ${{github.ref_name}}
|
26 |
+
|
27 |
+
- name: Set up Python ${{ matrix.python-version }}
|
28 |
+
uses: actions/setup-python@v4
|
29 |
+
with:
|
30 |
+
python-version: ${{ matrix.python-version }}
|
31 |
+
|
32 |
+
- name: Install Black
|
33 |
+
run: pip install "black[jupyter]"
|
34 |
+
|
35 |
+
- name: Run Black
|
36 |
+
# run: black $(git ls-files '*.py')
|
37 |
+
run: black .
|
38 |
+
|
39 |
+
- name: Commit Back
|
40 |
+
continue-on-error: true
|
41 |
+
id: commitback
|
42 |
+
run: |
|
43 |
+
git config --local user.email "github-actions[bot]@users.noreply.github.com"
|
44 |
+
git config --local user.name "github-actions[bot]"
|
45 |
+
git add --all
|
46 |
+
git commit -m "Format code"
|
47 |
+
|
48 |
+
- name: Create Pull Request
|
49 |
+
if: steps.commitback.outcome == 'success'
|
50 |
+
continue-on-error: true
|
51 |
+
uses: peter-evans/create-pull-request@v5
|
52 |
+
with:
|
53 |
+
delete-branch: true
|
54 |
+
body: Apply Code Formatter Change
|
55 |
+
title: Apply Code Formatter Change
|
56 |
+
commit-message: Automatic code format
|
.github/workflows/unitest.yml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: unitest
|
2 |
+
on: [ push, pull_request ]
|
3 |
+
jobs:
|
4 |
+
build:
|
5 |
+
runs-on: ${{ matrix.os }}
|
6 |
+
strategy:
|
7 |
+
matrix:
|
8 |
+
python-version: ["3.8", "3.9", "3.10"]
|
9 |
+
os: [ubuntu-latest]
|
10 |
+
fail-fast: false
|
11 |
+
|
12 |
+
steps:
|
13 |
+
- uses: actions/checkout@master
|
14 |
+
- name: Set up Python ${{ matrix.python-version }}
|
15 |
+
uses: actions/setup-python@v4
|
16 |
+
with:
|
17 |
+
python-version: ${{ matrix.python-version }}
|
18 |
+
- name: Install dependencies
|
19 |
+
run: |
|
20 |
+
sudo apt update
|
21 |
+
sudo apt -y install ffmpeg
|
22 |
+
sudo apt -y install -qq aria2
|
23 |
+
aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d ./ -o hubert_base.pt
|
24 |
+
python -m pip install --upgrade pip
|
25 |
+
python -m pip install --upgrade setuptools
|
26 |
+
python -m pip install --upgrade wheel
|
27 |
+
pip install torch torchvision torchaudio
|
28 |
+
pip install -r requirements.txt
|
29 |
+
- name: Test step 1 & 2
|
30 |
+
run: |
|
31 |
+
mkdir -p logs/mi-test
|
32 |
+
touch logs/mi-test/preprocess.log
|
33 |
+
python infer/modules/train/preprocess.py logs/mute/0_gt_wavs 48000 8 logs/mi-test True 3.7
|
34 |
+
touch logs/mi-test/extract_f0_feature.log
|
35 |
+
python infer/modules/train/extract/extract_f0_print.py logs/mi-test $(nproc) pm
|
36 |
+
python infer/modules/train/extract_feature_print.py cpu 1 0 0 logs/mi-test v1
|
.gitignore
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
__pycache__
|
3 |
+
/TEMP
|
4 |
+
*.pyd
|
5 |
+
.venv
|
6 |
+
/opt
|
7 |
+
tools/aria2c/
|
8 |
+
tools/flag.txt
|
9 |
+
|
10 |
+
# Imported from huggingface.co/lj1995/VoiceConversionWebUI
|
11 |
+
/pretrained
|
12 |
+
/pretrained_v2
|
13 |
+
/uvr5_weights
|
14 |
+
hubert_base.pt
|
15 |
+
rmvpe.onnx
|
16 |
+
rmvpe.pt
|
17 |
+
|
18 |
+
# Generated by RVC
|
19 |
+
/logs
|
20 |
+
/weights
|
21 |
+
|
22 |
+
# To set a Python version for the project
|
23 |
+
.tool-versions
|
Dockerfile
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# syntax=docker/dockerfile:1
|
2 |
+
|
3 |
+
FROM python:3.10-bullseye
|
4 |
+
|
5 |
+
EXPOSE 7865
|
6 |
+
|
7 |
+
WORKDIR /app
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
RUN apt update && apt install -y -qq ffmpeg aria2 && apt clean
|
12 |
+
|
13 |
+
RUN pip3 install --no-cache-dir -r requirements.txt
|
14 |
+
|
15 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -d assets/pretrained_v2/ -o D40k.pth
|
16 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -d assets/pretrained_v2/ -o G40k.pth
|
17 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D40k.pth -d assets/pretrained_v2/ -o f0D40k.pth
|
18 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G40k.pth -d assets/pretrained_v2/ -o f0G40k.pth
|
19 |
+
|
20 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d assets/uvr5_weights/ -o HP2-人声vocals+非人声instrumentals.pth
|
21 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d assets/uvr5_weights/ -o HP5-主旋律人声vocals+其他instrumentals.pth
|
22 |
+
|
23 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d assets/hubert -o hubert_base.pt
|
24 |
+
|
25 |
+
RUN aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d assets/hubert -o rmvpe.pt
|
26 |
+
|
27 |
+
VOLUME [ "/app/weights", "/app/opt" ]
|
28 |
+
|
29 |
+
CMD ["python3", "infer-web.py"]
|
GUI.py
ADDED
@@ -0,0 +1,1410 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
import datetime, subprocess
|
3 |
+
from mega import Mega
|
4 |
+
now_dir = os.getcwd()
|
5 |
+
sys.path.append(now_dir)
|
6 |
+
import logging
|
7 |
+
import shutil
|
8 |
+
import threading
|
9 |
+
import traceback
|
10 |
+
import warnings
|
11 |
+
from random import shuffle
|
12 |
+
from subprocess import Popen
|
13 |
+
from time import sleep
|
14 |
+
import json
|
15 |
+
import pathlib
|
16 |
+
|
17 |
+
import fairseq
|
18 |
+
import faiss
|
19 |
+
import gradio as gr
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from dotenv import load_dotenv
|
23 |
+
from sklearn.cluster import MiniBatchKMeans
|
24 |
+
|
25 |
+
from configs.config import Config
|
26 |
+
from i18n.i18n import I18nAuto
|
27 |
+
from infer.lib.train.process_ckpt import (
|
28 |
+
change_info,
|
29 |
+
extract_small_model,
|
30 |
+
merge,
|
31 |
+
show_info,
|
32 |
+
)
|
33 |
+
from infer.modules.uvr5.modules import uvr
|
34 |
+
from infer.modules.vc.modules import VC
|
35 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
36 |
+
|
37 |
+
logger = logging.getLogger(__name__)
|
38 |
+
|
39 |
+
tmp = os.path.join(now_dir, "TEMP")
|
40 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
41 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
42 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
43 |
+
os.makedirs(tmp, exist_ok=True)
|
44 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
45 |
+
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
46 |
+
os.environ["TEMP"] = tmp
|
47 |
+
warnings.filterwarnings("ignore")
|
48 |
+
torch.manual_seed(114514)
|
49 |
+
|
50 |
+
|
51 |
+
load_dotenv()
|
52 |
+
config = Config()
|
53 |
+
vc = VC(config)
|
54 |
+
|
55 |
+
if config.dml == True:
|
56 |
+
|
57 |
+
def forward_dml(ctx, x, scale):
|
58 |
+
ctx.scale = scale
|
59 |
+
res = x.clone().detach()
|
60 |
+
return res
|
61 |
+
|
62 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
63 |
+
i18n = I18nAuto()
|
64 |
+
logger.info(i18n)
|
65 |
+
# 判断是否有能用来训练和加速推理的N卡
|
66 |
+
ngpu = torch.cuda.device_count()
|
67 |
+
gpu_infos = []
|
68 |
+
mem = []
|
69 |
+
if_gpu_ok = False
|
70 |
+
|
71 |
+
if torch.cuda.is_available() or ngpu != 0:
|
72 |
+
for i in range(ngpu):
|
73 |
+
gpu_name = torch.cuda.get_device_name(i)
|
74 |
+
if any(
|
75 |
+
value in gpu_name.upper()
|
76 |
+
for value in [
|
77 |
+
"10",
|
78 |
+
"16",
|
79 |
+
"20",
|
80 |
+
"30",
|
81 |
+
"40",
|
82 |
+
"A2",
|
83 |
+
"A3",
|
84 |
+
"A4",
|
85 |
+
"P4",
|
86 |
+
"A50",
|
87 |
+
"500",
|
88 |
+
"A60",
|
89 |
+
"70",
|
90 |
+
"80",
|
91 |
+
"90",
|
92 |
+
"M4",
|
93 |
+
"T4",
|
94 |
+
"TITAN",
|
95 |
+
]
|
96 |
+
):
|
97 |
+
# A10#A100#V100#A40#P40#M40#K80#A4500
|
98 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
99 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
100 |
+
mem.append(
|
101 |
+
int(
|
102 |
+
torch.cuda.get_device_properties(i).total_memory
|
103 |
+
/ 1024
|
104 |
+
/ 1024
|
105 |
+
/ 1024
|
106 |
+
+ 0.4
|
107 |
+
)
|
108 |
+
)
|
109 |
+
if if_gpu_ok and len(gpu_infos) > 0:
|
110 |
+
gpu_info = "\n".join(gpu_infos)
|
111 |
+
default_batch_size = min(mem) // 2
|
112 |
+
else:
|
113 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
114 |
+
default_batch_size = 1
|
115 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
116 |
+
|
117 |
+
|
118 |
+
class ToolButton(gr.Button, gr.components.FormComponent):
|
119 |
+
"""Small button with single emoji as text, fits inside gradio forms"""
|
120 |
+
|
121 |
+
def __init__(self, **kwargs):
|
122 |
+
super().__init__(variant="tool", **kwargs)
|
123 |
+
|
124 |
+
def get_block_name(self):
|
125 |
+
return "button"
|
126 |
+
|
127 |
+
|
128 |
+
weight_root = os.getenv("weight_root")
|
129 |
+
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
130 |
+
index_root = os.getenv("index_root")
|
131 |
+
|
132 |
+
names = []
|
133 |
+
for name in os.listdir(weight_root):
|
134 |
+
if name.endswith(".pth"):
|
135 |
+
names.append(name)
|
136 |
+
index_paths = []
|
137 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
138 |
+
for name in files:
|
139 |
+
if name.endswith(".index") and "trained" not in name:
|
140 |
+
index_paths.append("%s/%s" % (root, name))
|
141 |
+
uvr5_names = []
|
142 |
+
for name in os.listdir(weight_uvr5_root):
|
143 |
+
if name.endswith(".pth") or "onnx" in name:
|
144 |
+
uvr5_names.append(name.replace(".pth", ""))
|
145 |
+
|
146 |
+
|
147 |
+
def change_choices():
|
148 |
+
names = []
|
149 |
+
for name in os.listdir(weight_root):
|
150 |
+
if name.endswith(".pth"):
|
151 |
+
names.append(name)
|
152 |
+
index_paths = []
|
153 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
154 |
+
for name in files:
|
155 |
+
if name.endswith(".index") and "trained" not in name:
|
156 |
+
index_paths.append("%s/%s" % (root, name))
|
157 |
+
audio_files=[]
|
158 |
+
for filename in os.listdir("./audios"):
|
159 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
160 |
+
audio_files.append('./audios/'+filename)
|
161 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
162 |
+
"choices": sorted(index_paths),
|
163 |
+
"__type__": "update",
|
164 |
+
}, {"choices": sorted(audio_files), "__type__": "update"}
|
165 |
+
|
166 |
+
def clean():
|
167 |
+
return {"value": "", "__type__": "update"}
|
168 |
+
|
169 |
+
|
170 |
+
def export_onnx():
|
171 |
+
from infer.modules.onnx.export import export_onnx as eo
|
172 |
+
|
173 |
+
eo()
|
174 |
+
|
175 |
+
|
176 |
+
sr_dict = {
|
177 |
+
"32k": 32000,
|
178 |
+
"40k": 40000,
|
179 |
+
"48k": 48000,
|
180 |
+
}
|
181 |
+
|
182 |
+
|
183 |
+
def if_done(done, p):
|
184 |
+
while 1:
|
185 |
+
if p.poll() is None:
|
186 |
+
sleep(0.5)
|
187 |
+
else:
|
188 |
+
break
|
189 |
+
done[0] = True
|
190 |
+
|
191 |
+
|
192 |
+
def if_done_multi(done, ps):
|
193 |
+
while 1:
|
194 |
+
# poll==None代表进程未结束
|
195 |
+
# 只要有一个进程未结束都不停
|
196 |
+
flag = 1
|
197 |
+
for p in ps:
|
198 |
+
if p.poll() is None:
|
199 |
+
flag = 0
|
200 |
+
sleep(0.5)
|
201 |
+
break
|
202 |
+
if flag == 1:
|
203 |
+
break
|
204 |
+
done[0] = True
|
205 |
+
|
206 |
+
|
207 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
208 |
+
sr = sr_dict[sr]
|
209 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
210 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
211 |
+
f.close()
|
212 |
+
per = 3.0 if config.is_half else 3.7
|
213 |
+
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
214 |
+
config.python_cmd,
|
215 |
+
trainset_dir,
|
216 |
+
sr,
|
217 |
+
n_p,
|
218 |
+
now_dir,
|
219 |
+
exp_dir,
|
220 |
+
config.noparallel,
|
221 |
+
per,
|
222 |
+
)
|
223 |
+
logger.info(cmd)
|
224 |
+
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
225 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
226 |
+
done = [False]
|
227 |
+
threading.Thread(
|
228 |
+
target=if_done,
|
229 |
+
args=(
|
230 |
+
done,
|
231 |
+
p,
|
232 |
+
),
|
233 |
+
).start()
|
234 |
+
while 1:
|
235 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
236 |
+
yield (f.read())
|
237 |
+
sleep(1)
|
238 |
+
if done[0]:
|
239 |
+
break
|
240 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
241 |
+
log = f.read()
|
242 |
+
logger.info(log)
|
243 |
+
yield log
|
244 |
+
|
245 |
+
|
246 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
247 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
248 |
+
gpus = gpus.split("-")
|
249 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
250 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
251 |
+
f.close()
|
252 |
+
if if_f0:
|
253 |
+
if f0method != "rmvpe_gpu":
|
254 |
+
cmd = (
|
255 |
+
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
256 |
+
% (
|
257 |
+
config.python_cmd,
|
258 |
+
now_dir,
|
259 |
+
exp_dir,
|
260 |
+
n_p,
|
261 |
+
f0method,
|
262 |
+
)
|
263 |
+
)
|
264 |
+
logger.info(cmd)
|
265 |
+
p = Popen(
|
266 |
+
cmd, shell=True, cwd=now_dir
|
267 |
+
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
268 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
269 |
+
done = [False]
|
270 |
+
threading.Thread(
|
271 |
+
target=if_done,
|
272 |
+
args=(
|
273 |
+
done,
|
274 |
+
p,
|
275 |
+
),
|
276 |
+
).start()
|
277 |
+
else:
|
278 |
+
if gpus_rmvpe != "-":
|
279 |
+
gpus_rmvpe = gpus_rmvpe.split("-")
|
280 |
+
leng = len(gpus_rmvpe)
|
281 |
+
ps = []
|
282 |
+
for idx, n_g in enumerate(gpus_rmvpe):
|
283 |
+
cmd = (
|
284 |
+
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
285 |
+
% (
|
286 |
+
config.python_cmd,
|
287 |
+
leng,
|
288 |
+
idx,
|
289 |
+
n_g,
|
290 |
+
now_dir,
|
291 |
+
exp_dir,
|
292 |
+
config.is_half,
|
293 |
+
)
|
294 |
+
)
|
295 |
+
logger.info(cmd)
|
296 |
+
p = Popen(
|
297 |
+
cmd, shell=True, cwd=now_dir
|
298 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
299 |
+
ps.append(p)
|
300 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
301 |
+
done = [False]
|
302 |
+
threading.Thread(
|
303 |
+
target=if_done_multi, #
|
304 |
+
args=(
|
305 |
+
done,
|
306 |
+
ps,
|
307 |
+
),
|
308 |
+
).start()
|
309 |
+
else:
|
310 |
+
cmd = (
|
311 |
+
config.python_cmd
|
312 |
+
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
313 |
+
% (
|
314 |
+
now_dir,
|
315 |
+
exp_dir,
|
316 |
+
)
|
317 |
+
)
|
318 |
+
logger.info(cmd)
|
319 |
+
p = Popen(
|
320 |
+
cmd, shell=True, cwd=now_dir
|
321 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
322 |
+
p.wait()
|
323 |
+
done = [True]
|
324 |
+
while 1:
|
325 |
+
with open(
|
326 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
327 |
+
) as f:
|
328 |
+
yield (f.read())
|
329 |
+
sleep(1)
|
330 |
+
if done[0]:
|
331 |
+
break
|
332 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
333 |
+
log = f.read()
|
334 |
+
logger.info(log)
|
335 |
+
yield log
|
336 |
+
####对不同part分别开多进程
|
337 |
+
"""
|
338 |
+
n_part=int(sys.argv[1])
|
339 |
+
i_part=int(sys.argv[2])
|
340 |
+
i_gpu=sys.argv[3]
|
341 |
+
exp_dir=sys.argv[4]
|
342 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
343 |
+
"""
|
344 |
+
leng = len(gpus)
|
345 |
+
ps = []
|
346 |
+
for idx, n_g in enumerate(gpus):
|
347 |
+
cmd = (
|
348 |
+
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
|
349 |
+
% (
|
350 |
+
config.python_cmd,
|
351 |
+
config.device,
|
352 |
+
leng,
|
353 |
+
idx,
|
354 |
+
n_g,
|
355 |
+
now_dir,
|
356 |
+
exp_dir,
|
357 |
+
version19,
|
358 |
+
)
|
359 |
+
)
|
360 |
+
logger.info(cmd)
|
361 |
+
p = Popen(
|
362 |
+
cmd, shell=True, cwd=now_dir
|
363 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
364 |
+
ps.append(p)
|
365 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
366 |
+
done = [False]
|
367 |
+
threading.Thread(
|
368 |
+
target=if_done_multi,
|
369 |
+
args=(
|
370 |
+
done,
|
371 |
+
ps,
|
372 |
+
),
|
373 |
+
).start()
|
374 |
+
while 1:
|
375 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
376 |
+
yield (f.read())
|
377 |
+
sleep(1)
|
378 |
+
if done[0]:
|
379 |
+
break
|
380 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
381 |
+
log = f.read()
|
382 |
+
logger.info(log)
|
383 |
+
yield log
|
384 |
+
|
385 |
+
|
386 |
+
def get_pretrained_models(path_str, f0_str, sr2):
|
387 |
+
if_pretrained_generator_exist = os.access(
|
388 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
389 |
+
)
|
390 |
+
if_pretrained_discriminator_exist = os.access(
|
391 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
392 |
+
)
|
393 |
+
if not if_pretrained_generator_exist:
|
394 |
+
logger.warn(
|
395 |
+
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
396 |
+
path_str,
|
397 |
+
f0_str,
|
398 |
+
sr2,
|
399 |
+
)
|
400 |
+
if not if_pretrained_discriminator_exist:
|
401 |
+
logger.warn(
|
402 |
+
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
403 |
+
path_str,
|
404 |
+
f0_str,
|
405 |
+
sr2,
|
406 |
+
)
|
407 |
+
return (
|
408 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
409 |
+
if if_pretrained_generator_exist
|
410 |
+
else "",
|
411 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
412 |
+
if if_pretrained_discriminator_exist
|
413 |
+
else "",
|
414 |
+
)
|
415 |
+
|
416 |
+
|
417 |
+
def change_sr2(sr2, if_f0_3, version19):
|
418 |
+
path_str = "" if version19 == "v1" else "_v2"
|
419 |
+
f0_str = "f0" if if_f0_3 else ""
|
420 |
+
return get_pretrained_models(path_str, f0_str, sr2)
|
421 |
+
|
422 |
+
|
423 |
+
def change_version19(sr2, if_f0_3, version19):
|
424 |
+
path_str = "" if version19 == "v1" else "_v2"
|
425 |
+
if sr2 == "32k" and version19 == "v1":
|
426 |
+
sr2 = "40k"
|
427 |
+
to_return_sr2 = (
|
428 |
+
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
429 |
+
if version19 == "v1"
|
430 |
+
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
431 |
+
)
|
432 |
+
f0_str = "f0" if if_f0_3 else ""
|
433 |
+
return (
|
434 |
+
*get_pretrained_models(path_str, f0_str, sr2),
|
435 |
+
to_return_sr2,
|
436 |
+
)
|
437 |
+
|
438 |
+
|
439 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
440 |
+
path_str = "" if version19 == "v1" else "_v2"
|
441 |
+
return (
|
442 |
+
{"visible": if_f0_3, "__type__": "update"},
|
443 |
+
*get_pretrained_models(path_str, "f0", sr2),
|
444 |
+
)
|
445 |
+
|
446 |
+
|
447 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
448 |
+
def click_train(
|
449 |
+
exp_dir1,
|
450 |
+
sr2,
|
451 |
+
if_f0_3,
|
452 |
+
spk_id5,
|
453 |
+
save_epoch10,
|
454 |
+
total_epoch11,
|
455 |
+
batch_size12,
|
456 |
+
if_save_latest13,
|
457 |
+
pretrained_G14,
|
458 |
+
pretrained_D15,
|
459 |
+
gpus16,
|
460 |
+
if_cache_gpu17,
|
461 |
+
if_save_every_weights18,
|
462 |
+
version19,
|
463 |
+
):
|
464 |
+
# 生成filelist
|
465 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
466 |
+
os.makedirs(exp_dir, exist_ok=True)
|
467 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
468 |
+
feature_dir = (
|
469 |
+
"%s/3_feature256" % (exp_dir)
|
470 |
+
if version19 == "v1"
|
471 |
+
else "%s/3_feature768" % (exp_dir)
|
472 |
+
)
|
473 |
+
if if_f0_3:
|
474 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
475 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
476 |
+
names = (
|
477 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
478 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
479 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
480 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
481 |
+
)
|
482 |
+
else:
|
483 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
484 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
485 |
+
)
|
486 |
+
opt = []
|
487 |
+
for name in names:
|
488 |
+
if if_f0_3:
|
489 |
+
opt.append(
|
490 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
491 |
+
% (
|
492 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
493 |
+
name,
|
494 |
+
feature_dir.replace("\\", "\\\\"),
|
495 |
+
name,
|
496 |
+
f0_dir.replace("\\", "\\\\"),
|
497 |
+
name,
|
498 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
499 |
+
name,
|
500 |
+
spk_id5,
|
501 |
+
)
|
502 |
+
)
|
503 |
+
else:
|
504 |
+
opt.append(
|
505 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
506 |
+
% (
|
507 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
508 |
+
name,
|
509 |
+
feature_dir.replace("\\", "\\\\"),
|
510 |
+
name,
|
511 |
+
spk_id5,
|
512 |
+
)
|
513 |
+
)
|
514 |
+
fea_dim = 256 if version19 == "v1" else 768
|
515 |
+
if if_f0_3:
|
516 |
+
for _ in range(2):
|
517 |
+
opt.append(
|
518 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
519 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
520 |
+
)
|
521 |
+
else:
|
522 |
+
for _ in range(2):
|
523 |
+
opt.append(
|
524 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
525 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
526 |
+
)
|
527 |
+
shuffle(opt)
|
528 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
529 |
+
f.write("\n".join(opt))
|
530 |
+
logger.debug("Write filelist done")
|
531 |
+
# 生成config#无需生成config
|
532 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
533 |
+
logger.info("Use gpus: %s", str(gpus16))
|
534 |
+
if pretrained_G14 == "":
|
535 |
+
logger.info("No pretrained Generator")
|
536 |
+
if pretrained_D15 == "":
|
537 |
+
logger.info("No pretrained Discriminator")
|
538 |
+
if version19 == "v1" or sr2 == "40k":
|
539 |
+
config_path = "v1/%s.json" % sr2
|
540 |
+
else:
|
541 |
+
config_path = "v2/%s.json" % sr2
|
542 |
+
config_save_path = os.path.join(exp_dir, "config.json")
|
543 |
+
if not pathlib.Path(config_save_path).exists():
|
544 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
545 |
+
json.dump(
|
546 |
+
config.json_config[config_path],
|
547 |
+
f,
|
548 |
+
ensure_ascii=False,
|
549 |
+
indent=4,
|
550 |
+
sort_keys=True,
|
551 |
+
)
|
552 |
+
f.write("\n")
|
553 |
+
if gpus16:
|
554 |
+
cmd = (
|
555 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
556 |
+
% (
|
557 |
+
config.python_cmd,
|
558 |
+
exp_dir1,
|
559 |
+
sr2,
|
560 |
+
1 if if_f0_3 else 0,
|
561 |
+
batch_size12,
|
562 |
+
gpus16,
|
563 |
+
total_epoch11,
|
564 |
+
save_epoch10,
|
565 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
566 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
567 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
568 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
569 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
570 |
+
version19,
|
571 |
+
)
|
572 |
+
)
|
573 |
+
else:
|
574 |
+
cmd = (
|
575 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
576 |
+
% (
|
577 |
+
config.python_cmd,
|
578 |
+
exp_dir1,
|
579 |
+
sr2,
|
580 |
+
1 if if_f0_3 else 0,
|
581 |
+
batch_size12,
|
582 |
+
total_epoch11,
|
583 |
+
save_epoch10,
|
584 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
585 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
586 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
587 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
588 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
589 |
+
version19,
|
590 |
+
)
|
591 |
+
)
|
592 |
+
logger.info(cmd)
|
593 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
594 |
+
p.wait()
|
595 |
+
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
596 |
+
|
597 |
+
|
598 |
+
# but4.click(train_index, [exp_dir1], info3)
|
599 |
+
def train_index(exp_dir1, version19):
|
600 |
+
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
601 |
+
exp_dir = "logs/%s" % (exp_dir1)
|
602 |
+
os.makedirs(exp_dir, exist_ok=True)
|
603 |
+
feature_dir = (
|
604 |
+
"%s/3_feature256" % (exp_dir)
|
605 |
+
if version19 == "v1"
|
606 |
+
else "%s/3_feature768" % (exp_dir)
|
607 |
+
)
|
608 |
+
if not os.path.exists(feature_dir):
|
609 |
+
return "请先进行特征提取!"
|
610 |
+
listdir_res = list(os.listdir(feature_dir))
|
611 |
+
if len(listdir_res) == 0:
|
612 |
+
return "请先进行特征提取!"
|
613 |
+
infos = []
|
614 |
+
npys = []
|
615 |
+
for name in sorted(listdir_res):
|
616 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
617 |
+
npys.append(phone)
|
618 |
+
big_npy = np.concatenate(npys, 0)
|
619 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
620 |
+
np.random.shuffle(big_npy_idx)
|
621 |
+
big_npy = big_npy[big_npy_idx]
|
622 |
+
if big_npy.shape[0] > 2e5:
|
623 |
+
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
624 |
+
yield "\n".join(infos)
|
625 |
+
try:
|
626 |
+
big_npy = (
|
627 |
+
MiniBatchKMeans(
|
628 |
+
n_clusters=10000,
|
629 |
+
verbose=True,
|
630 |
+
batch_size=256 * config.n_cpu,
|
631 |
+
compute_labels=False,
|
632 |
+
init="random",
|
633 |
+
)
|
634 |
+
.fit(big_npy)
|
635 |
+
.cluster_centers_
|
636 |
+
)
|
637 |
+
except:
|
638 |
+
info = traceback.format_exc()
|
639 |
+
logger.info(info)
|
640 |
+
infos.append(info)
|
641 |
+
yield "\n".join(infos)
|
642 |
+
|
643 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
644 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
645 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
646 |
+
yield "\n".join(infos)
|
647 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
648 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
649 |
+
infos.append("training")
|
650 |
+
yield "\n".join(infos)
|
651 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
652 |
+
index_ivf.nprobe = 1
|
653 |
+
index.train(big_npy)
|
654 |
+
faiss.write_index(
|
655 |
+
index,
|
656 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
657 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
658 |
+
)
|
659 |
+
|
660 |
+
infos.append("adding")
|
661 |
+
yield "\n".join(infos)
|
662 |
+
batch_size_add = 8192
|
663 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
664 |
+
index.add(big_npy[i : i + batch_size_add])
|
665 |
+
faiss.write_index(
|
666 |
+
index,
|
667 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
668 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
669 |
+
)
|
670 |
+
infos.append(
|
671 |
+
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
672 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
673 |
+
)
|
674 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
675 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
676 |
+
yield "\n".join(infos)
|
677 |
+
|
678 |
+
|
679 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
680 |
+
def train1key(
|
681 |
+
exp_dir1,
|
682 |
+
sr2,
|
683 |
+
if_f0_3,
|
684 |
+
trainset_dir4,
|
685 |
+
spk_id5,
|
686 |
+
np7,
|
687 |
+
f0method8,
|
688 |
+
save_epoch10,
|
689 |
+
total_epoch11,
|
690 |
+
batch_size12,
|
691 |
+
if_save_latest13,
|
692 |
+
pretrained_G14,
|
693 |
+
pretrained_D15,
|
694 |
+
gpus16,
|
695 |
+
if_cache_gpu17,
|
696 |
+
if_save_every_weights18,
|
697 |
+
version19,
|
698 |
+
gpus_rmvpe,
|
699 |
+
):
|
700 |
+
infos = []
|
701 |
+
|
702 |
+
def get_info_str(strr):
|
703 |
+
infos.append(strr)
|
704 |
+
return "\n".join(infos)
|
705 |
+
|
706 |
+
####### step1:处理数据
|
707 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
708 |
+
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
709 |
+
|
710 |
+
####### step2a:提取音高
|
711 |
+
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
712 |
+
[
|
713 |
+
get_info_str(_)
|
714 |
+
for _ in extract_f0_feature(
|
715 |
+
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
716 |
+
)
|
717 |
+
]
|
718 |
+
|
719 |
+
####### step3a:训练模型
|
720 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
721 |
+
click_train(
|
722 |
+
exp_dir1,
|
723 |
+
sr2,
|
724 |
+
if_f0_3,
|
725 |
+
spk_id5,
|
726 |
+
save_epoch10,
|
727 |
+
total_epoch11,
|
728 |
+
batch_size12,
|
729 |
+
if_save_latest13,
|
730 |
+
pretrained_G14,
|
731 |
+
pretrained_D15,
|
732 |
+
gpus16,
|
733 |
+
if_cache_gpu17,
|
734 |
+
if_save_every_weights18,
|
735 |
+
version19,
|
736 |
+
)
|
737 |
+
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
738 |
+
|
739 |
+
####### step3b:训练索引
|
740 |
+
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
741 |
+
yield get_info_str(i18n("全流程结束!"))
|
742 |
+
|
743 |
+
|
744 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
745 |
+
def change_info_(ckpt_path):
|
746 |
+
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
747 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
748 |
+
try:
|
749 |
+
with open(
|
750 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
751 |
+
) as f:
|
752 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
753 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
754 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
755 |
+
return sr, str(f0), version
|
756 |
+
except:
|
757 |
+
traceback.print_exc()
|
758 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
759 |
+
|
760 |
+
|
761 |
+
F0GPUVisible = config.dml == False
|
762 |
+
|
763 |
+
|
764 |
+
def change_f0_method(f0method8):
|
765 |
+
if f0method8 == "rmvpe_gpu":
|
766 |
+
visible = F0GPUVisible
|
767 |
+
else:
|
768 |
+
visible = False
|
769 |
+
return {"visible": visible, "__type__": "update"}
|
770 |
+
|
771 |
+
def find_model():
|
772 |
+
if len(names) > 0:
|
773 |
+
vc.get_vc(sorted(names)[0],None,None)
|
774 |
+
return sorted(names)[0]
|
775 |
+
else:
|
776 |
+
try:
|
777 |
+
gr.Info("Do not forget to choose a model.")
|
778 |
+
except:
|
779 |
+
pass
|
780 |
+
return ''
|
781 |
+
|
782 |
+
def find_audios(index=False):
|
783 |
+
audio_files=[]
|
784 |
+
if not os.path.exists('./audios'): os.mkdir("./audios")
|
785 |
+
for filename in os.listdir("./audios"):
|
786 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
787 |
+
audio_files.append("./audios/"+filename)
|
788 |
+
if index:
|
789 |
+
if len(audio_files) > 0: return sorted(audio_files)[0]
|
790 |
+
else: return ""
|
791 |
+
elif len(audio_files) > 0: return sorted(audio_files)
|
792 |
+
else: return []
|
793 |
+
|
794 |
+
def get_index():
|
795 |
+
if find_model() != '':
|
796 |
+
chosen_model=sorted(names)[0].split(".")[0]
|
797 |
+
logs_path="./logs/"+chosen_model
|
798 |
+
if os.path.exists(logs_path):
|
799 |
+
for file in os.listdir(logs_path):
|
800 |
+
if file.endswith(".index"):
|
801 |
+
return os.path.join(logs_path, file)
|
802 |
+
return ''
|
803 |
+
else:
|
804 |
+
return ''
|
805 |
+
|
806 |
+
def get_indexes():
|
807 |
+
indexes_list=[]
|
808 |
+
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
809 |
+
for filename in filenames:
|
810 |
+
if filename.endswith(".index"):
|
811 |
+
indexes_list.append(os.path.join(dirpath,filename))
|
812 |
+
if len(indexes_list) > 0:
|
813 |
+
return indexes_list
|
814 |
+
else:
|
815 |
+
return ''
|
816 |
+
|
817 |
+
def save_wav(file):
|
818 |
+
try:
|
819 |
+
file_path=file.name
|
820 |
+
shutil.move(file_path,'./audios')
|
821 |
+
return './audios/'+os.path.basename(file_path)
|
822 |
+
except AttributeError:
|
823 |
+
try:
|
824 |
+
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
825 |
+
new_path='./audios/'+new_name
|
826 |
+
shutil.move(file,new_path)
|
827 |
+
return new_path
|
828 |
+
except TypeError:
|
829 |
+
return None
|
830 |
+
|
831 |
+
def download_from_url(url, model):
|
832 |
+
if url == '':
|
833 |
+
return "URL cannot be left empty."
|
834 |
+
if model =='':
|
835 |
+
return "You need to name your model. For example: My-Model"
|
836 |
+
url = url.strip()
|
837 |
+
zip_dirs = ["zips", "unzips"]
|
838 |
+
for directory in zip_dirs:
|
839 |
+
if os.path.exists(directory):
|
840 |
+
shutil.rmtree(directory)
|
841 |
+
os.makedirs("zips", exist_ok=True)
|
842 |
+
os.makedirs("unzips", exist_ok=True)
|
843 |
+
zipfile = model + '.zip'
|
844 |
+
zipfile_path = './zips/' + zipfile
|
845 |
+
try:
|
846 |
+
if "drive.google.com" in url:
|
847 |
+
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
|
848 |
+
elif "mega.nz" in url:
|
849 |
+
m = Mega()
|
850 |
+
m.download_url(url, './zips')
|
851 |
+
else:
|
852 |
+
subprocess.run(["wget", url, "-O", zipfile_path])
|
853 |
+
for filename in os.listdir("./zips"):
|
854 |
+
if filename.endswith(".zip"):
|
855 |
+
zipfile_path = os.path.join("./zips/",filename)
|
856 |
+
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
|
857 |
+
else:
|
858 |
+
return "No zipfile found."
|
859 |
+
for root, dirs, files in os.walk('./unzips'):
|
860 |
+
for file in files:
|
861 |
+
file_path = os.path.join(root, file)
|
862 |
+
if file.endswith(".index"):
|
863 |
+
os.mkdir(f'./logs/{model}')
|
864 |
+
shutil.copy2(file_path,f'./logs/{model}')
|
865 |
+
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
|
866 |
+
shutil.copy(file_path,f'./assets/weights/{model}.pth')
|
867 |
+
shutil.rmtree("zips")
|
868 |
+
shutil.rmtree("unzips")
|
869 |
+
return "Success."
|
870 |
+
except:
|
871 |
+
return "There's been an error."
|
872 |
+
|
873 |
+
def upload_to_dataset(files, dir):
|
874 |
+
if dir == '':
|
875 |
+
dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
876 |
+
if not os.path.exists(dir):
|
877 |
+
os.makedirs(dir)
|
878 |
+
for file in files:
|
879 |
+
path=file.name
|
880 |
+
shutil.copy2(path,dir)
|
881 |
+
try:
|
882 |
+
gr.Info(i18n("处理数据"))
|
883 |
+
except:
|
884 |
+
pass
|
885 |
+
return i18n("处理数据"), {"value":dir,"__type__":"update"}
|
886 |
+
|
887 |
+
with gr.Blocks(title="EasyGUI v2.9",theme=gr.themes.Base()) as app:
|
888 |
+
gr.HTML("<h1> EasyGUI v2.9 </h1>")
|
889 |
+
with gr.Tabs():
|
890 |
+
with gr.TabItem(i18n("模型推理")):
|
891 |
+
with gr.Row():
|
892 |
+
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model())
|
893 |
+
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
|
894 |
+
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
895 |
+
spk_item = gr.Slider(
|
896 |
+
minimum=0,
|
897 |
+
maximum=2333,
|
898 |
+
step=1,
|
899 |
+
label=i18n("请选择说话人id"),
|
900 |
+
value=0,
|
901 |
+
visible=False,
|
902 |
+
interactive=True,
|
903 |
+
)
|
904 |
+
#clean_button.click(
|
905 |
+
# fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
906 |
+
#)
|
907 |
+
vc_transform0 = gr.Number(
|
908 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
909 |
+
)
|
910 |
+
but0 = gr.Button(i18n("转换"), variant="primary")
|
911 |
+
with gr.Row():
|
912 |
+
with gr.Column():
|
913 |
+
with gr.Row():
|
914 |
+
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
915 |
+
with gr.Row():
|
916 |
+
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
917 |
+
with gr.Row():
|
918 |
+
input_audio0 = gr.Dropdown(
|
919 |
+
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
|
920 |
+
value=find_audios(True),
|
921 |
+
choices=find_audios()
|
922 |
+
)
|
923 |
+
record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0])
|
924 |
+
dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0])
|
925 |
+
with gr.Column():
|
926 |
+
with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False):
|
927 |
+
file_index2 = gr.Dropdown(
|
928 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
929 |
+
choices=get_indexes(),
|
930 |
+
interactive=True,
|
931 |
+
value=get_index()
|
932 |
+
)
|
933 |
+
index_rate1 = gr.Slider(
|
934 |
+
minimum=0,
|
935 |
+
maximum=1,
|
936 |
+
label=i18n("检索特征占比"),
|
937 |
+
value=0.66,
|
938 |
+
interactive=True,
|
939 |
+
)
|
940 |
+
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
941 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
942 |
+
f0method0 = gr.Radio(
|
943 |
+
label=i18n(
|
944 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
945 |
+
),
|
946 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
947 |
+
if config.dml == False
|
948 |
+
else ["pm", "harvest", "rmvpe"],
|
949 |
+
value="rmvpe",
|
950 |
+
interactive=True,
|
951 |
+
)
|
952 |
+
filter_radius0 = gr.Slider(
|
953 |
+
minimum=0,
|
954 |
+
maximum=7,
|
955 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
956 |
+
value=3,
|
957 |
+
step=1,
|
958 |
+
interactive=True,
|
959 |
+
)
|
960 |
+
resample_sr0 = gr.Slider(
|
961 |
+
minimum=0,
|
962 |
+
maximum=48000,
|
963 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
964 |
+
value=0,
|
965 |
+
step=1,
|
966 |
+
interactive=True,
|
967 |
+
)
|
968 |
+
rms_mix_rate0 = gr.Slider(
|
969 |
+
minimum=0,
|
970 |
+
maximum=1,
|
971 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
972 |
+
value=0.21,
|
973 |
+
interactive=True,
|
974 |
+
)
|
975 |
+
protect0 = gr.Slider(
|
976 |
+
minimum=0,
|
977 |
+
maximum=0.5,
|
978 |
+
label=i18n(
|
979 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
980 |
+
),
|
981 |
+
value=0.33,
|
982 |
+
step=0.01,
|
983 |
+
interactive=True,
|
984 |
+
)
|
985 |
+
file_index1 = gr.Textbox(
|
986 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
987 |
+
value="",
|
988 |
+
interactive=True,
|
989 |
+
visible=False
|
990 |
+
)
|
991 |
+
refresh_button.click(
|
992 |
+
fn=change_choices,
|
993 |
+
inputs=[],
|
994 |
+
outputs=[sid0, file_index2, input_audio0],
|
995 |
+
api_name="infer_refresh",
|
996 |
+
)
|
997 |
+
# file_big_npy1 = gr.Textbox(
|
998 |
+
# label=i18n("特征文件路径"),
|
999 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1000 |
+
# interactive=True,
|
1001 |
+
# )
|
1002 |
+
with gr.Row():
|
1003 |
+
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
|
1004 |
+
with gr.Row():
|
1005 |
+
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
1006 |
+
but0.click(
|
1007 |
+
vc.vc_single,
|
1008 |
+
[
|
1009 |
+
spk_item,
|
1010 |
+
input_audio0,
|
1011 |
+
vc_transform0,
|
1012 |
+
f0_file,
|
1013 |
+
f0method0,
|
1014 |
+
file_index1,
|
1015 |
+
file_index2,
|
1016 |
+
# file_big_npy1,
|
1017 |
+
index_rate1,
|
1018 |
+
filter_radius0,
|
1019 |
+
resample_sr0,
|
1020 |
+
rms_mix_rate0,
|
1021 |
+
protect0,
|
1022 |
+
],
|
1023 |
+
[vc_output1, vc_output2],
|
1024 |
+
api_name="infer_convert",
|
1025 |
+
)
|
1026 |
+
with gr.Row():
|
1027 |
+
with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")):
|
1028 |
+
with gr.Column():
|
1029 |
+
vc_transform1 = gr.Number(
|
1030 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
1031 |
+
)
|
1032 |
+
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
1033 |
+
f0method1 = gr.Radio(
|
1034 |
+
label=i18n(
|
1035 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
1036 |
+
),
|
1037 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
1038 |
+
if config.dml == False
|
1039 |
+
else ["pm", "harvest", "rmvpe"],
|
1040 |
+
value="pm",
|
1041 |
+
interactive=True,
|
1042 |
+
)
|
1043 |
+
filter_radius1 = gr.Slider(
|
1044 |
+
minimum=0,
|
1045 |
+
maximum=7,
|
1046 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
1047 |
+
value=3,
|
1048 |
+
step=1,
|
1049 |
+
interactive=True,
|
1050 |
+
)
|
1051 |
+
with gr.Column():
|
1052 |
+
file_index3 = gr.Textbox(
|
1053 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
1054 |
+
value="",
|
1055 |
+
interactive=True,
|
1056 |
+
visible=False
|
1057 |
+
)
|
1058 |
+
file_index4 = gr.Dropdown(
|
1059 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
1060 |
+
choices=sorted(index_paths),
|
1061 |
+
interactive=True,
|
1062 |
+
)
|
1063 |
+
refresh_button.click(
|
1064 |
+
fn=lambda: change_choices()[1],
|
1065 |
+
inputs=[],
|
1066 |
+
outputs=file_index4,
|
1067 |
+
api_name="infer_refresh_batch",
|
1068 |
+
)
|
1069 |
+
# file_big_npy2 = gr.Textbox(
|
1070 |
+
# label=i18n("特征文件路径"),
|
1071 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1072 |
+
# interactive=True,
|
1073 |
+
# )
|
1074 |
+
index_rate2 = gr.Slider(
|
1075 |
+
minimum=0,
|
1076 |
+
maximum=1,
|
1077 |
+
label=i18n("检索特征占比"),
|
1078 |
+
value=1,
|
1079 |
+
interactive=True,
|
1080 |
+
)
|
1081 |
+
with gr.Column():
|
1082 |
+
resample_sr1 = gr.Slider(
|
1083 |
+
minimum=0,
|
1084 |
+
maximum=48000,
|
1085 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
1086 |
+
value=0,
|
1087 |
+
step=1,
|
1088 |
+
interactive=True,
|
1089 |
+
)
|
1090 |
+
rms_mix_rate1 = gr.Slider(
|
1091 |
+
minimum=0,
|
1092 |
+
maximum=1,
|
1093 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
1094 |
+
value=1,
|
1095 |
+
interactive=True,
|
1096 |
+
)
|
1097 |
+
protect1 = gr.Slider(
|
1098 |
+
minimum=0,
|
1099 |
+
maximum=0.5,
|
1100 |
+
label=i18n(
|
1101 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
1102 |
+
),
|
1103 |
+
value=0.33,
|
1104 |
+
step=0.01,
|
1105 |
+
interactive=True,
|
1106 |
+
)
|
1107 |
+
with gr.Column():
|
1108 |
+
dir_input = gr.Textbox(
|
1109 |
+
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
1110 |
+
value="E:\codes\py39\\test-20230416b\\todo-songs",
|
1111 |
+
)
|
1112 |
+
inputs = gr.File(
|
1113 |
+
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
1114 |
+
)
|
1115 |
+
with gr.Row():
|
1116 |
+
format1 = gr.Radio(
|
1117 |
+
label=i18n("导出文件格式"),
|
1118 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
1119 |
+
value="flac",
|
1120 |
+
interactive=True,
|
1121 |
+
)
|
1122 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
1123 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
1124 |
+
but1.click(
|
1125 |
+
vc.vc_multi,
|
1126 |
+
[
|
1127 |
+
spk_item,
|
1128 |
+
dir_input,
|
1129 |
+
opt_input,
|
1130 |
+
inputs,
|
1131 |
+
vc_transform1,
|
1132 |
+
f0method1,
|
1133 |
+
file_index3,
|
1134 |
+
file_index4,
|
1135 |
+
# file_big_npy2,
|
1136 |
+
index_rate2,
|
1137 |
+
filter_radius1,
|
1138 |
+
resample_sr1,
|
1139 |
+
rms_mix_rate1,
|
1140 |
+
protect1,
|
1141 |
+
format1,
|
1142 |
+
],
|
1143 |
+
[vc_output3],
|
1144 |
+
api_name="infer_convert_batch",
|
1145 |
+
)
|
1146 |
+
sid0.change(
|
1147 |
+
fn=vc.get_vc,
|
1148 |
+
inputs=[sid0, protect0, protect1],
|
1149 |
+
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
1150 |
+
)
|
1151 |
+
with gr.TabItem("Download Model"):
|
1152 |
+
with gr.Row():
|
1153 |
+
url=gr.Textbox(label="Enter the URL to the Model:")
|
1154 |
+
with gr.Row():
|
1155 |
+
model = gr.Textbox(label="Name your model:")
|
1156 |
+
download_button=gr.Button("Download")
|
1157 |
+
with gr.Row():
|
1158 |
+
status_bar=gr.Textbox(label="")
|
1159 |
+
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
1160 |
+
with gr.Row():
|
1161 |
+
gr.Markdown(
|
1162 |
+
"""
|
1163 |
+
❤️ If you like the EasyGUI, help me keep it.❤️
|
1164 |
+
https://paypal.me/lesantillan
|
1165 |
+
"""
|
1166 |
+
)
|
1167 |
+
with gr.TabItem(i18n("训练")):
|
1168 |
+
with gr.Row():
|
1169 |
+
with gr.Column():
|
1170 |
+
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="My-Voice")
|
1171 |
+
np7 = gr.Slider(
|
1172 |
+
minimum=0,
|
1173 |
+
maximum=config.n_cpu,
|
1174 |
+
step=1,
|
1175 |
+
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
1176 |
+
value=int(np.ceil(config.n_cpu / 1.5)),
|
1177 |
+
interactive=True,
|
1178 |
+
)
|
1179 |
+
sr2 = gr.Radio(
|
1180 |
+
label=i18n("目标采样率"),
|
1181 |
+
choices=["40k", "48k"],
|
1182 |
+
value="40k",
|
1183 |
+
interactive=True,
|
1184 |
+
visible=False
|
1185 |
+
)
|
1186 |
+
if_f0_3 = gr.Radio(
|
1187 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
1188 |
+
choices=[True, False],
|
1189 |
+
value=True,
|
1190 |
+
interactive=True,
|
1191 |
+
visible=False
|
1192 |
+
)
|
1193 |
+
version19 = gr.Radio(
|
1194 |
+
label=i18n("版本"),
|
1195 |
+
choices=["v1", "v2"],
|
1196 |
+
value="v2",
|
1197 |
+
interactive=True,
|
1198 |
+
visible=False,
|
1199 |
+
)
|
1200 |
+
trainset_dir4 = gr.Textbox(
|
1201 |
+
label=i18n("输入训练文件夹路径"), value='./dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
1202 |
+
)
|
1203 |
+
easy_uploader = gr.Files(label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),file_types=['audio'])
|
1204 |
+
but1 = gr.Button(label=i18n("处理数据"), variant="primary")
|
1205 |
+
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
1206 |
+
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1, trainset_dir4])
|
1207 |
+
gpus6 = gr.Textbox(
|
1208 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1209 |
+
value=gpus,
|
1210 |
+
interactive=True,
|
1211 |
+
visible=F0GPUVisible,
|
1212 |
+
)
|
1213 |
+
gpu_info9 = gr.Textbox(
|
1214 |
+
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
1215 |
+
)
|
1216 |
+
spk_id5 = gr.Slider(
|
1217 |
+
minimum=0,
|
1218 |
+
maximum=4,
|
1219 |
+
step=1,
|
1220 |
+
label=i18n("请指定说话人id"),
|
1221 |
+
value=0,
|
1222 |
+
interactive=True,
|
1223 |
+
visible=False
|
1224 |
+
)
|
1225 |
+
but1.click(
|
1226 |
+
preprocess_dataset,
|
1227 |
+
[trainset_dir4, exp_dir1, sr2, np7],
|
1228 |
+
[info1],
|
1229 |
+
api_name="train_preprocess",
|
1230 |
+
)
|
1231 |
+
with gr.Column():
|
1232 |
+
f0method8 = gr.Radio(
|
1233 |
+
label=i18n(
|
1234 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
1235 |
+
),
|
1236 |
+
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
1237 |
+
value="rmvpe_gpu",
|
1238 |
+
interactive=True,
|
1239 |
+
)
|
1240 |
+
gpus_rmvpe = gr.Textbox(
|
1241 |
+
label=i18n(
|
1242 |
+
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
1243 |
+
),
|
1244 |
+
value="%s-%s" % (gpus, gpus),
|
1245 |
+
interactive=True,
|
1246 |
+
visible=F0GPUVisible,
|
1247 |
+
)
|
1248 |
+
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
1249 |
+
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1250 |
+
f0method8.change(
|
1251 |
+
fn=change_f0_method,
|
1252 |
+
inputs=[f0method8],
|
1253 |
+
outputs=[gpus_rmvpe],
|
1254 |
+
)
|
1255 |
+
but2.click(
|
1256 |
+
extract_f0_feature,
|
1257 |
+
[
|
1258 |
+
gpus6,
|
1259 |
+
np7,
|
1260 |
+
f0method8,
|
1261 |
+
if_f0_3,
|
1262 |
+
exp_dir1,
|
1263 |
+
version19,
|
1264 |
+
gpus_rmvpe,
|
1265 |
+
],
|
1266 |
+
[info2],
|
1267 |
+
api_name="train_extract_f0_feature",
|
1268 |
+
)
|
1269 |
+
with gr.Column():
|
1270 |
+
total_epoch11 = gr.Slider(
|
1271 |
+
minimum=2,
|
1272 |
+
maximum=1000,
|
1273 |
+
step=1,
|
1274 |
+
label=i18n("总训练轮数total_epoch"),
|
1275 |
+
value=150,
|
1276 |
+
interactive=True,
|
1277 |
+
)
|
1278 |
+
gpus16 = gr.Textbox(
|
1279 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1280 |
+
value="0",
|
1281 |
+
interactive=True,
|
1282 |
+
visible=True
|
1283 |
+
)
|
1284 |
+
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
1285 |
+
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
1286 |
+
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
1287 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
1288 |
+
save_epoch10 = gr.Slider(
|
1289 |
+
minimum=1,
|
1290 |
+
maximum=50,
|
1291 |
+
step=1,
|
1292 |
+
label=i18n("保存频率save_every_epoch"),
|
1293 |
+
value=25,
|
1294 |
+
interactive=True,
|
1295 |
+
)
|
1296 |
+
batch_size12 = gr.Slider(
|
1297 |
+
minimum=1,
|
1298 |
+
maximum=40,
|
1299 |
+
step=1,
|
1300 |
+
label=i18n("每张显卡的batch_size"),
|
1301 |
+
value=default_batch_size,
|
1302 |
+
interactive=True,
|
1303 |
+
)
|
1304 |
+
if_save_latest13 = gr.Radio(
|
1305 |
+
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
1306 |
+
choices=[i18n("是"), i18n("否")],
|
1307 |
+
value=i18n("是"),
|
1308 |
+
interactive=True,
|
1309 |
+
)
|
1310 |
+
if_cache_gpu17 = gr.Radio(
|
1311 |
+
label=i18n(
|
1312 |
+
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
1313 |
+
),
|
1314 |
+
choices=[i18n("是"), i18n("否")],
|
1315 |
+
value=i18n("否"),
|
1316 |
+
interactive=True,
|
1317 |
+
)
|
1318 |
+
if_save_every_weights18 = gr.Radio(
|
1319 |
+
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
1320 |
+
choices=[i18n("是"), i18n("否")],
|
1321 |
+
value=i18n("是"),
|
1322 |
+
interactive=True,
|
1323 |
+
)
|
1324 |
+
with gr.Row():
|
1325 |
+
pretrained_G14 = gr.Textbox(
|
1326 |
+
label=i18n("加载预训练底模G路径"),
|
1327 |
+
value="assets/pretrained_v2/f0G40k.pth",
|
1328 |
+
interactive=True,
|
1329 |
+
visible=False
|
1330 |
+
)
|
1331 |
+
pretrained_D15 = gr.Textbox(
|
1332 |
+
label=i18n("加载预训练底模D路径"),
|
1333 |
+
value="assets/pretrained_v2/f0D40k.pth",
|
1334 |
+
interactive=True,
|
1335 |
+
visible=False
|
1336 |
+
)
|
1337 |
+
sr2.change(
|
1338 |
+
change_sr2,
|
1339 |
+
[sr2, if_f0_3, version19],
|
1340 |
+
[pretrained_G14, pretrained_D15],
|
1341 |
+
)
|
1342 |
+
version19.change(
|
1343 |
+
change_version19,
|
1344 |
+
[sr2, if_f0_3, version19],
|
1345 |
+
[pretrained_G14, pretrained_D15, sr2],
|
1346 |
+
)
|
1347 |
+
if_f0_3.change(
|
1348 |
+
change_f0,
|
1349 |
+
[if_f0_3, sr2, version19],
|
1350 |
+
[f0method8, pretrained_G14, pretrained_D15],
|
1351 |
+
)
|
1352 |
+
with gr.Row():
|
1353 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
1354 |
+
but3.click(
|
1355 |
+
click_train,
|
1356 |
+
[
|
1357 |
+
exp_dir1,
|
1358 |
+
sr2,
|
1359 |
+
if_f0_3,
|
1360 |
+
spk_id5,
|
1361 |
+
save_epoch10,
|
1362 |
+
total_epoch11,
|
1363 |
+
batch_size12,
|
1364 |
+
if_save_latest13,
|
1365 |
+
pretrained_G14,
|
1366 |
+
pretrained_D15,
|
1367 |
+
gpus16,
|
1368 |
+
if_cache_gpu17,
|
1369 |
+
if_save_every_weights18,
|
1370 |
+
version19,
|
1371 |
+
],
|
1372 |
+
info3,
|
1373 |
+
api_name="train_start",
|
1374 |
+
)
|
1375 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
1376 |
+
but5.click(
|
1377 |
+
train1key,
|
1378 |
+
[
|
1379 |
+
exp_dir1,
|
1380 |
+
sr2,
|
1381 |
+
if_f0_3,
|
1382 |
+
trainset_dir4,
|
1383 |
+
spk_id5,
|
1384 |
+
np7,
|
1385 |
+
f0method8,
|
1386 |
+
save_epoch10,
|
1387 |
+
total_epoch11,
|
1388 |
+
batch_size12,
|
1389 |
+
if_save_latest13,
|
1390 |
+
pretrained_G14,
|
1391 |
+
pretrained_D15,
|
1392 |
+
gpus16,
|
1393 |
+
if_cache_gpu17,
|
1394 |
+
if_save_every_weights18,
|
1395 |
+
version19,
|
1396 |
+
gpus_rmvpe,
|
1397 |
+
],
|
1398 |
+
info3,
|
1399 |
+
api_name="train_start_all",
|
1400 |
+
)
|
1401 |
+
|
1402 |
+
if config.iscolab:
|
1403 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
1404 |
+
else:
|
1405 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
1406 |
+
server_name="0.0.0.0",
|
1407 |
+
inbrowser=not config.noautoopen,
|
1408 |
+
server_port=config.listen_port,
|
1409 |
+
quiet=True,
|
1410 |
+
)
|
LICENSE
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 liujing04
|
4 |
+
Copyright (c) 2023 源文雨
|
5 |
+
Copyright (c) 2023 Ftps
|
6 |
+
|
7 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
8 |
+
of this software and associated documentation files (the "Software"), to deal
|
9 |
+
in the Software without restriction, including without limitation the rights
|
10 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
11 |
+
copies of the Software, and to permit persons to whom the Software is
|
12 |
+
furnished to do so, subject to the following conditions:
|
13 |
+
|
14 |
+
The above copyright notice and this permission notice shall be included in all
|
15 |
+
copies or substantial portions of the Software.
|
16 |
+
|
17 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
18 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
19 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
20 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
21 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
22 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
23 |
+
SOFTWARE.
|
MIT协议暨相关引用库协议
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
本软件及其相关代码以MIT协议开源,作者不对软件具备任何控制力,使用软件者、传播软件导出的声音者自负全责。
|
2 |
+
如不认可该条款,则不能使用或引用软件包内任何代码和文件。
|
3 |
+
|
4 |
+
特此授予任何获得本软件和相关文档文件(以下简称“软件”)副本的人免费使用、复制、修改、合并、出版、分发、再授权和/或销售本软件的权利,以及授予本软件所提供的人使用本软件的权利,但须符合以下条件:
|
5 |
+
上述版权声明和本许可声明应包含在软件的所有副本或实质部分中。
|
6 |
+
软件是“按原样”提供的,没有任何明示或暗示的保证,包括但不限于适销性、适用于特定目的和不侵权的保证。在任何情况下,作者或版权持有人均不承担因软件或软件的使用或其他交易而产生、产生或与之相关的任何索赔、损害赔偿或其他责任,无论是在合同诉讼、侵权诉讼还是其他诉讼中。
|
7 |
+
|
8 |
+
|
9 |
+
The LICENCEs for related libraries are as follows.
|
10 |
+
相关引用库协议如下:
|
11 |
+
|
12 |
+
ContentVec
|
13 |
+
https://github.com/auspicious3000/contentvec/blob/main/LICENSE
|
14 |
+
MIT License
|
15 |
+
|
16 |
+
VITS
|
17 |
+
https://github.com/jaywalnut310/vits/blob/main/LICENSE
|
18 |
+
MIT License
|
19 |
+
|
20 |
+
HIFIGAN
|
21 |
+
https://github.com/jik876/hifi-gan/blob/master/LICENSE
|
22 |
+
MIT License
|
23 |
+
|
24 |
+
gradio
|
25 |
+
https://github.com/gradio-app/gradio/blob/main/LICENSE
|
26 |
+
Apache License 2.0
|
27 |
+
|
28 |
+
ffmpeg
|
29 |
+
https://github.com/FFmpeg/FFmpeg/blob/master/COPYING.LGPLv3
|
30 |
+
https://github.com/BtbN/FFmpeg-Builds/releases/download/autobuild-2021-02-28-12-32/ffmpeg-n4.3.2-160-gfbb9368226-win64-lgpl-4.3.zip
|
31 |
+
LPGLv3 License
|
32 |
+
MIT License
|
33 |
+
|
34 |
+
ultimatevocalremovergui
|
35 |
+
https://github.com/Anjok07/ultimatevocalremovergui/blob/master/LICENSE
|
36 |
+
https://github.com/yang123qwe/vocal_separation_by_uvr5
|
37 |
+
MIT License
|
38 |
+
|
39 |
+
audio-slicer
|
40 |
+
https://github.com/openvpi/audio-slicer/blob/main/LICENSE
|
41 |
+
MIT License
|
42 |
+
|
43 |
+
PySimpleGUI
|
44 |
+
https://github.com/PySimpleGUI/PySimpleGUI/blob/master/license.txt
|
45 |
+
LPGLv3 License
|
README.md
CHANGED
@@ -1,12 +1,38 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
|
|
11 |
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: project-main
|
3 |
+
app_file: infer-web.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 3.43.2
|
|
|
|
|
6 |
---
|
7 |
+
[](https://colab.research.google.com/drive/1r4IRL0UA7JEoZ0ZK8PKfMyTIBHKpyhcw)
|
8 |
|
9 |
+
# Local Installation
|
10 |
+
If you already have RVC installed, then just download GUI.py and drop it in the root folder!
|
11 |
+
If you need to install RVC, I recommend you check the [original repo](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)
|
12 |
+
Or read this at least.
|
13 |
+
|
14 |
+
I recommend you use a virtual environment
|
15 |
+
|
16 |
+
```bash
|
17 |
+
python -m venv RVC
|
18 |
+
cd RVC
|
19 |
+
git clone https://github.com/777gt/-EVC-
|
20 |
+
Scripts/activate.bat
|
21 |
+
pip install torch torchvision torchaudio
|
22 |
+
pip install -r "-EVC-/requirements.txt"
|
23 |
+
```
|
24 |
+
If you're on Windows, like me, and don't have an NVIDA graphics card, install the requirements from a different .txt:
|
25 |
+
```bash
|
26 |
+
pip install -r "-EVC-/requirements-dml.txt"
|
27 |
+
```
|
28 |
+
Also, do not forget to download the necessary models. EasyGUI uses RVC 2 40k models.
|
29 |
+
|
30 |
+
```bash
|
31 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -O ./assets/rmvpe/rmvpe.pt
|
32 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.onnx -O ./assets/rmvpe/rmvpe.onnx
|
33 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -O ./assets/hubert/hubert_base.pt
|
34 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -O ./assets/pretrained_v2/D40k.pth
|
35 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -O ./assets/pretrained_v2/G40k.pth
|
36 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D40k.pth -O ./assets/pretrained_v2/f0D40k.pth
|
37 |
+
wget https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G40k.pth -O ./assets/pretrained_v2/f0G40k.pth
|
38 |
+
```
|
Retrieval_based_Voice_Conversion_WebUI.ipynb
ADDED
@@ -0,0 +1,403 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# [Retrieval-based-Voice-Conversion-WebUI](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) Training notebook"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"attachments": {},
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"metadata": {
|
15 |
+
"id": "ZFFCx5J80SGa"
|
16 |
+
},
|
17 |
+
"source": [
|
18 |
+
"[](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI.ipynb)"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": null,
|
24 |
+
"metadata": {
|
25 |
+
"id": "GmFP6bN9dvOq"
|
26 |
+
},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"# @title 查看显卡\n",
|
30 |
+
"!nvidia-smi"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"metadata": {
|
37 |
+
"id": "jwu07JgqoFON"
|
38 |
+
},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"# @title 挂载谷歌云盘\n",
|
42 |
+
"\n",
|
43 |
+
"from google.colab import drive\n",
|
44 |
+
"\n",
|
45 |
+
"drive.mount(\"/content/drive\")"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"metadata": {
|
52 |
+
"id": "wjddIFr1oS3W"
|
53 |
+
},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"# @title 安装依赖\n",
|
57 |
+
"!apt-get -y install build-essential python3-dev ffmpeg\n",
|
58 |
+
"!pip3 install --upgrade setuptools wheel\n",
|
59 |
+
"!pip3 install --upgrade pip\n",
|
60 |
+
"!pip3 install faiss-cpu==1.7.2 fairseq gradio==3.14.0 ffmpeg ffmpeg-python praat-parselmouth pyworld numpy==1.23.5 numba==0.56.4 librosa==0.9.2"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"metadata": {
|
67 |
+
"id": "ge_97mfpgqTm"
|
68 |
+
},
|
69 |
+
"outputs": [],
|
70 |
+
"source": [
|
71 |
+
"# @title 克隆仓库\n",
|
72 |
+
"\n",
|
73 |
+
"!git clone --depth=1 -b stable https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI\n",
|
74 |
+
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
|
75 |
+
"!mkdir -p pretrained uvr5_weights"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": null,
|
81 |
+
"metadata": {
|
82 |
+
"id": "BLDEZADkvlw1"
|
83 |
+
},
|
84 |
+
"outputs": [],
|
85 |
+
"source": [
|
86 |
+
"# @title 更新仓库(一般无需执行)\n",
|
87 |
+
"!git pull"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"cell_type": "code",
|
92 |
+
"execution_count": null,
|
93 |
+
"metadata": {
|
94 |
+
"id": "pqE0PrnuRqI2"
|
95 |
+
},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"# @title 安装aria2\n",
|
99 |
+
"!apt -y install -qq aria2"
|
100 |
+
]
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"cell_type": "code",
|
104 |
+
"execution_count": null,
|
105 |
+
"metadata": {
|
106 |
+
"id": "UG3XpUwEomUz"
|
107 |
+
},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"# @title 下载底模\n",
|
111 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D32k.pth\n",
|
112 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D40k.pth\n",
|
113 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D48k.pth\n",
|
114 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G32k.pth\n",
|
115 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G40k.pth\n",
|
116 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G48k.pth\n",
|
117 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D32k.pth\n",
|
118 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D40k.pth\n",
|
119 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D48k.pth\n",
|
120 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G32k.pth\n",
|
121 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G40k.pth\n",
|
122 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G48k.pth"
|
123 |
+
]
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"cell_type": "code",
|
127 |
+
"execution_count": null,
|
128 |
+
"metadata": {
|
129 |
+
"id": "HugjmZqZRuiF"
|
130 |
+
},
|
131 |
+
"outputs": [],
|
132 |
+
"source": [
|
133 |
+
"# @title 下载人声分离模型\n",
|
134 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP2-人声vocals+非人声instrumentals.pth\n",
|
135 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP5-主旋律人声vocals+其他instrumentals.pth"
|
136 |
+
]
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"cell_type": "code",
|
140 |
+
"execution_count": null,
|
141 |
+
"metadata": {
|
142 |
+
"id": "2RCaT9FTR0ej"
|
143 |
+
},
|
144 |
+
"outputs": [],
|
145 |
+
"source": [
|
146 |
+
"# @title 下载hubert_base\n",
|
147 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o hubert_base.pt"
|
148 |
+
]
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"cell_type": "code",
|
152 |
+
"execution_count": null,
|
153 |
+
"metadata": {},
|
154 |
+
"outputs": [],
|
155 |
+
"source": [
|
156 |
+
"# @title #下载rmvpe模型\n",
|
157 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o rmvpe.pt"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"cell_type": "code",
|
162 |
+
"execution_count": null,
|
163 |
+
"metadata": {
|
164 |
+
"id": "Mwk7Q0Loqzjx"
|
165 |
+
},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"# @title 从谷歌云盘加载打包好的数据集到/content/dataset\n",
|
169 |
+
"\n",
|
170 |
+
"# @markdown 数据集位置\n",
|
171 |
+
"DATASET = (\n",
|
172 |
+
" \"/content/drive/MyDrive/dataset/lulu20230327_32k.zip\" # @param {type:\"string\"}\n",
|
173 |
+
")\n",
|
174 |
+
"\n",
|
175 |
+
"!mkdir -p /content/dataset\n",
|
176 |
+
"!unzip -d /content/dataset -B {DATASET}"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": null,
|
182 |
+
"metadata": {
|
183 |
+
"id": "PDlFxWHWEynD"
|
184 |
+
},
|
185 |
+
"outputs": [],
|
186 |
+
"source": [
|
187 |
+
"# @title 重命名数据集中的重名文件\n",
|
188 |
+
"!ls -a /content/dataset/\n",
|
189 |
+
"!rename 's/(\\w+)\\.(\\w+)~(\\d*)/$1_$3.$2/' /content/dataset/*.*~*"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": null,
|
195 |
+
"metadata": {
|
196 |
+
"id": "7vh6vphDwO0b"
|
197 |
+
},
|
198 |
+
"outputs": [],
|
199 |
+
"source": [
|
200 |
+
"# @title 启动web\n",
|
201 |
+
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
|
202 |
+
"# %load_ext tensorboard\n",
|
203 |
+
"# %tensorboard --logdir /content/Retrieval-based-Voice-Conversion-WebUI/logs\n",
|
204 |
+
"!python3 infer-web.py --colab --pycmd python3"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"cell_type": "code",
|
209 |
+
"execution_count": null,
|
210 |
+
"metadata": {
|
211 |
+
"id": "FgJuNeAwx5Y_"
|
212 |
+
},
|
213 |
+
"outputs": [],
|
214 |
+
"source": [
|
215 |
+
"# @title 手动将训练后的模型文件备份到谷歌云盘\n",
|
216 |
+
"# @markdown 需要自己查看logs文件夹下模型的文件名,手动修改下方命令末尾的文件名\n",
|
217 |
+
"\n",
|
218 |
+
"# @markdown 模型名\n",
|
219 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
220 |
+
"# @markdown 模型epoch\n",
|
221 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
222 |
+
"\n",
|
223 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
224 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
225 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/added_*.index /content/drive/MyDrive/\n",
|
226 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/total_*.npy /content/drive/MyDrive/\n",
|
227 |
+
"\n",
|
228 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": null,
|
234 |
+
"metadata": {
|
235 |
+
"id": "OVQoLQJXS7WX"
|
236 |
+
},
|
237 |
+
"outputs": [],
|
238 |
+
"source": [
|
239 |
+
"# @title 从谷歌云盘恢复pth\n",
|
240 |
+
"# @markdown 需要自己查看logs文件夹下模型的文件名,手动修改下方命令末尾的文件名\n",
|
241 |
+
"\n",
|
242 |
+
"# @markdown 模型名\n",
|
243 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
244 |
+
"# @markdown 模型epoch\n",
|
245 |
+
"MODELEPOCH = 7500 # @param {type:\"integer\"}\n",
|
246 |
+
"\n",
|
247 |
+
"!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
248 |
+
"\n",
|
249 |
+
"!cp /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
250 |
+
"!cp /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
251 |
+
"!cp /content/drive/MyDrive/*.index /content/\n",
|
252 |
+
"!cp /content/drive/MyDrive/*.npy /content/\n",
|
253 |
+
"!cp /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "code",
|
258 |
+
"execution_count": null,
|
259 |
+
"metadata": {
|
260 |
+
"id": "ZKAyuKb9J6dz"
|
261 |
+
},
|
262 |
+
"outputs": [],
|
263 |
+
"source": [
|
264 |
+
"# @title 手动预处理(不推荐)\n",
|
265 |
+
"# @markdown 模型名\n",
|
266 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
267 |
+
"# @markdown 采样率\n",
|
268 |
+
"BITRATE = 48000 # @param {type:\"integer\"}\n",
|
269 |
+
"# @markdown 使用的进程数\n",
|
270 |
+
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
|
271 |
+
"\n",
|
272 |
+
"!python3 trainset_preprocess_pipeline_print.py /content/dataset {BITRATE} {THREADCOUNT} logs/{MODELNAME} True"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": null,
|
278 |
+
"metadata": {
|
279 |
+
"id": "CrxJqzAUKmPJ"
|
280 |
+
},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"# @title 手动提取特征(不推荐)\n",
|
284 |
+
"# @markdown 模型名\n",
|
285 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
286 |
+
"# @markdown 使用的进程数\n",
|
287 |
+
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
|
288 |
+
"# @markdown 音高提取算法\n",
|
289 |
+
"ALGO = \"harvest\" # @param {type:\"string\"}\n",
|
290 |
+
"\n",
|
291 |
+
"!python3 extract_f0_print.py logs/{MODELNAME} {THREADCOUNT} {ALGO}\n",
|
292 |
+
"\n",
|
293 |
+
"!python3 extract_feature_print.py cpu 1 0 0 logs/{MODELNAME}"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": null,
|
299 |
+
"metadata": {
|
300 |
+
"id": "IMLPLKOaKj58"
|
301 |
+
},
|
302 |
+
"outputs": [],
|
303 |
+
"source": [
|
304 |
+
"# @title 手动训练(不推荐)\n",
|
305 |
+
"# @markdown 模型名\n",
|
306 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
307 |
+
"# @markdown 使用的GPU\n",
|
308 |
+
"USEGPU = \"0\" # @param {type:\"string\"}\n",
|
309 |
+
"# @markdown 批大小\n",
|
310 |
+
"BATCHSIZE = 32 # @param {type:\"integer\"}\n",
|
311 |
+
"# @markdown 停止的epoch\n",
|
312 |
+
"MODELEPOCH = 3200 # @param {type:\"integer\"}\n",
|
313 |
+
"# @markdown 保存epoch间隔\n",
|
314 |
+
"EPOCHSAVE = 100 # @param {type:\"integer\"}\n",
|
315 |
+
"# @markdown 采样率\n",
|
316 |
+
"MODELSAMPLE = \"48k\" # @param {type:\"string\"}\n",
|
317 |
+
"# @markdown 是否缓存训练集\n",
|
318 |
+
"CACHEDATA = 1 # @param {type:\"integer\"}\n",
|
319 |
+
"# @markdown 是否仅保存最新的ckpt文件\n",
|
320 |
+
"ONLYLATEST = 0 # @param {type:\"integer\"}\n",
|
321 |
+
"\n",
|
322 |
+
"!python3 train_nsf_sim_cache_sid_load_pretrain.py -e lulu -sr {MODELSAMPLE} -f0 1 -bs {BATCHSIZE} -g {USEGPU} -te {MODELEPOCH} -se {EPOCHSAVE} -pg pretrained/f0G{MODELSAMPLE}.pth -pd pretrained/f0D{MODELSAMPLE}.pth -l {ONLYLATEST} -c {CACHEDATA}"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"execution_count": null,
|
328 |
+
"metadata": {
|
329 |
+
"id": "haYA81hySuDl"
|
330 |
+
},
|
331 |
+
"outputs": [],
|
332 |
+
"source": [
|
333 |
+
"# @title 删除其它pth,只留选中的(慎点,仔细看代码)\n",
|
334 |
+
"# @markdown 模型名\n",
|
335 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
336 |
+
"# @markdown 选中模型epoch\n",
|
337 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
338 |
+
"\n",
|
339 |
+
"!echo \"备份选中的模型。。。\"\n",
|
340 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
341 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
342 |
+
"\n",
|
343 |
+
"!echo \"正在删除。。。\"\n",
|
344 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
345 |
+
"!rm /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*.pth\n",
|
346 |
+
"\n",
|
347 |
+
"!echo \"恢复选中的模型。。。\"\n",
|
348 |
+
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
349 |
+
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
350 |
+
"\n",
|
351 |
+
"!echo \"删除完成\"\n",
|
352 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "code",
|
357 |
+
"execution_count": null,
|
358 |
+
"metadata": {
|
359 |
+
"id": "QhSiPTVPoIRh"
|
360 |
+
},
|
361 |
+
"outputs": [],
|
362 |
+
"source": [
|
363 |
+
"# @title 清除项目下所有文件,只留选中的模型(慎点,仔细看代码)\n",
|
364 |
+
"# @markdown 模型名\n",
|
365 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
366 |
+
"# @markdown 选中模型epoch\n",
|
367 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
368 |
+
"\n",
|
369 |
+
"!echo \"备份选中的模型。。。\"\n",
|
370 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
371 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
372 |
+
"\n",
|
373 |
+
"!echo \"正��删除。。。\"\n",
|
374 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
375 |
+
"!rm -rf /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*\n",
|
376 |
+
"\n",
|
377 |
+
"!echo \"恢复选中的模型。。。\"\n",
|
378 |
+
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
379 |
+
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
380 |
+
"\n",
|
381 |
+
"!echo \"删除完成\"\n",
|
382 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
|
383 |
+
]
|
384 |
+
}
|
385 |
+
],
|
386 |
+
"metadata": {
|
387 |
+
"accelerator": "GPU",
|
388 |
+
"colab": {
|
389 |
+
"private_outputs": true,
|
390 |
+
"provenance": []
|
391 |
+
},
|
392 |
+
"gpuClass": "standard",
|
393 |
+
"kernelspec": {
|
394 |
+
"display_name": "Python 3",
|
395 |
+
"name": "python3"
|
396 |
+
},
|
397 |
+
"language_info": {
|
398 |
+
"name": "python"
|
399 |
+
}
|
400 |
+
},
|
401 |
+
"nbformat": 4,
|
402 |
+
"nbformat_minor": 0
|
403 |
+
}
|
Retrieval_based_Voice_Conversion_WebUI_v2.ipynb
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# [Retrieval-based-Voice-Conversion-WebUI](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI) Training notebook"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"attachments": {},
|
13 |
+
"cell_type": "markdown",
|
14 |
+
"metadata": {
|
15 |
+
"id": "ZFFCx5J80SGa"
|
16 |
+
},
|
17 |
+
"source": [
|
18 |
+
"[](https://colab.research.google.com/github/RVC-Project/Retrieval-based-Voice-Conversion-WebUI/blob/main/Retrieval_based_Voice_Conversion_WebUI_v2.ipynb)"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": null,
|
24 |
+
"metadata": {
|
25 |
+
"id": "GmFP6bN9dvOq"
|
26 |
+
},
|
27 |
+
"outputs": [],
|
28 |
+
"source": [
|
29 |
+
"# @title #查看显卡\n",
|
30 |
+
"!nvidia-smi"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"metadata": {
|
37 |
+
"id": "jwu07JgqoFON"
|
38 |
+
},
|
39 |
+
"outputs": [],
|
40 |
+
"source": [
|
41 |
+
"# @title 挂载谷歌云盘\n",
|
42 |
+
"\n",
|
43 |
+
"from google.colab import drive\n",
|
44 |
+
"\n",
|
45 |
+
"drive.mount(\"/content/drive\")"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"metadata": {
|
52 |
+
"id": "wjddIFr1oS3W"
|
53 |
+
},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"# @title #安装依赖\n",
|
57 |
+
"!apt-get -y install build-essential python3-dev ffmpeg\n",
|
58 |
+
"!pip3 install --upgrade setuptools wheel\n",
|
59 |
+
"!pip3 install --upgrade pip\n",
|
60 |
+
"!pip3 install faiss-cpu==1.7.2 fairseq gradio==3.14.0 ffmpeg ffmpeg-python praat-parselmouth pyworld numpy==1.23.5 numba==0.56.4 librosa==0.9.2"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"cell_type": "code",
|
65 |
+
"execution_count": null,
|
66 |
+
"metadata": {
|
67 |
+
"id": "ge_97mfpgqTm"
|
68 |
+
},
|
69 |
+
"outputs": [],
|
70 |
+
"source": [
|
71 |
+
"# @title #克隆仓库\n",
|
72 |
+
"\n",
|
73 |
+
"!mkdir Retrieval-based-Voice-Conversion-WebUI\n",
|
74 |
+
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
|
75 |
+
"!git init\n",
|
76 |
+
"!git remote add origin https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI.git\n",
|
77 |
+
"!git fetch origin cfd984812804ddc9247d65b14c82cd32e56c1133 --depth=1\n",
|
78 |
+
"!git reset --hard FETCH_HEAD"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"metadata": {
|
85 |
+
"id": "BLDEZADkvlw1"
|
86 |
+
},
|
87 |
+
"outputs": [],
|
88 |
+
"source": [
|
89 |
+
"# @title #更新仓库(一般无需执行)\n",
|
90 |
+
"!git pull"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": null,
|
96 |
+
"metadata": {
|
97 |
+
"id": "pqE0PrnuRqI2"
|
98 |
+
},
|
99 |
+
"outputs": [],
|
100 |
+
"source": [
|
101 |
+
"# @title #安装aria2\n",
|
102 |
+
"!apt -y install -qq aria2"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "code",
|
107 |
+
"execution_count": null,
|
108 |
+
"metadata": {
|
109 |
+
"id": "UG3XpUwEomUz"
|
110 |
+
},
|
111 |
+
"outputs": [],
|
112 |
+
"source": [
|
113 |
+
"# @title 下载底模\n",
|
114 |
+
"\n",
|
115 |
+
"# v1\n",
|
116 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D32k.pth\n",
|
117 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D40k.pth\n",
|
118 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o D48k.pth\n",
|
119 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G32k.pth\n",
|
120 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G40k.pth\n",
|
121 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o G48k.pth\n",
|
122 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D32k.pth\n",
|
123 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D40k.pth\n",
|
124 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0D48k.pth\n",
|
125 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G32k.pth\n",
|
126 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G40k.pth\n",
|
127 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained -o f0G48k.pth\n",
|
128 |
+
"\n",
|
129 |
+
"# v2\n",
|
130 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o D32k.pth\n",
|
131 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o D40k.pth\n",
|
132 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o D48k.pth\n",
|
133 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o G32k.pth\n",
|
134 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o G40k.pth\n",
|
135 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o G48k.pth\n",
|
136 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0D32k.pth\n",
|
137 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0D40k.pth\n",
|
138 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0D48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0D48k.pth\n",
|
139 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G32k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0G32k.pth\n",
|
140 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G40k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0G40k.pth\n",
|
141 |
+
"# !aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/pretrained_v2/f0G48k.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/pretrained_v2 -o f0G48k.pth"
|
142 |
+
]
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"cell_type": "code",
|
146 |
+
"execution_count": null,
|
147 |
+
"metadata": {
|
148 |
+
"id": "HugjmZqZRuiF"
|
149 |
+
},
|
150 |
+
"outputs": [],
|
151 |
+
"source": [
|
152 |
+
"# @title #下载人声分离模型\n",
|
153 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP2-人声vocals+非人声instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP2-人声vocals+非人声instrumentals.pth\n",
|
154 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/uvr5_weights/HP5-主旋律人声vocals+其他instrumentals.pth -d /content/Retrieval-based-Voice-Conversion-WebUI/uvr5_weights -o HP5-主旋律人声vocals+其他instrumentals.pth"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"cell_type": "code",
|
159 |
+
"execution_count": null,
|
160 |
+
"metadata": {
|
161 |
+
"id": "2RCaT9FTR0ej"
|
162 |
+
},
|
163 |
+
"outputs": [],
|
164 |
+
"source": [
|
165 |
+
"# @title #下载hubert_base\n",
|
166 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o hubert_base.pt"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": null,
|
172 |
+
"metadata": {},
|
173 |
+
"outputs": [],
|
174 |
+
"source": [
|
175 |
+
"# @title #下载rmvpe模型\n",
|
176 |
+
"!aria2c --console-log-level=error -c -x 16 -s 16 -k 1M https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt -d /content/Retrieval-based-Voice-Conversion-WebUI -o rmvpe.pt"
|
177 |
+
]
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"cell_type": "code",
|
181 |
+
"execution_count": null,
|
182 |
+
"metadata": {
|
183 |
+
"id": "Mwk7Q0Loqzjx"
|
184 |
+
},
|
185 |
+
"outputs": [],
|
186 |
+
"source": [
|
187 |
+
"# @title #从谷歌云盘加载打包好的数据集到/content/dataset\n",
|
188 |
+
"\n",
|
189 |
+
"# @markdown 数据集位置\n",
|
190 |
+
"DATASET = (\n",
|
191 |
+
" \"/content/drive/MyDrive/dataset/lulu20230327_32k.zip\" # @param {type:\"string\"}\n",
|
192 |
+
")\n",
|
193 |
+
"\n",
|
194 |
+
"!mkdir -p /content/dataset\n",
|
195 |
+
"!unzip -d /content/dataset -B {DATASET}"
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"execution_count": null,
|
201 |
+
"metadata": {
|
202 |
+
"id": "PDlFxWHWEynD"
|
203 |
+
},
|
204 |
+
"outputs": [],
|
205 |
+
"source": [
|
206 |
+
"# @title #重命名数据集中的重名文件\n",
|
207 |
+
"!ls -a /content/dataset/\n",
|
208 |
+
"!rename 's/(\\w+)\\.(\\w+)~(\\d*)/$1_$3.$2/' /content/dataset/*.*~*"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": null,
|
214 |
+
"metadata": {
|
215 |
+
"id": "7vh6vphDwO0b"
|
216 |
+
},
|
217 |
+
"outputs": [],
|
218 |
+
"source": [
|
219 |
+
"# @title #启动webui\n",
|
220 |
+
"%cd /content/Retrieval-based-Voice-Conversion-WebUI\n",
|
221 |
+
"# %load_ext tensorboard\n",
|
222 |
+
"# %tensorboard --logdir /content/Retrieval-based-Voice-Conversion-WebUI/logs\n",
|
223 |
+
"!python3 infer-web.py --colab --pycmd python3"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": null,
|
229 |
+
"metadata": {
|
230 |
+
"id": "FgJuNeAwx5Y_"
|
231 |
+
},
|
232 |
+
"outputs": [],
|
233 |
+
"source": [
|
234 |
+
"# @title #手动将训练后的模型文件备份到谷歌云盘\n",
|
235 |
+
"# @markdown #需要自己查看logs文件夹下模型的文件名,手动修改下方命令末尾的文件名\n",
|
236 |
+
"\n",
|
237 |
+
"# @markdown #模型名\n",
|
238 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
239 |
+
"# @markdown #模型epoch\n",
|
240 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
241 |
+
"\n",
|
242 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
243 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
244 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/added_*.index /content/drive/MyDrive/\n",
|
245 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/total_*.npy /content/drive/MyDrive/\n",
|
246 |
+
"\n",
|
247 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": null,
|
253 |
+
"metadata": {
|
254 |
+
"id": "OVQoLQJXS7WX"
|
255 |
+
},
|
256 |
+
"outputs": [],
|
257 |
+
"source": [
|
258 |
+
"# @title 从谷歌云盘恢复pth\n",
|
259 |
+
"# @markdown 需要自己查看logs文件夹下模型的文件名,手动修改下方命令末尾的文件名\n",
|
260 |
+
"\n",
|
261 |
+
"# @markdown 模型名\n",
|
262 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
263 |
+
"# @markdown 模型epoch\n",
|
264 |
+
"MODELEPOCH = 7500 # @param {type:\"integer\"}\n",
|
265 |
+
"\n",
|
266 |
+
"!mkdir -p /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
267 |
+
"\n",
|
268 |
+
"!cp /content/drive/MyDrive/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
269 |
+
"!cp /content/drive/MyDrive/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
270 |
+
"!cp /content/drive/MyDrive/*.index /content/\n",
|
271 |
+
"!cp /content/drive/MyDrive/*.npy /content/\n",
|
272 |
+
"!cp /content/drive/MyDrive/{MODELNAME}{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/weights/{MODELNAME}.pth"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"cell_type": "code",
|
277 |
+
"execution_count": null,
|
278 |
+
"metadata": {
|
279 |
+
"id": "ZKAyuKb9J6dz"
|
280 |
+
},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"# @title 手动预处理(不推荐)\n",
|
284 |
+
"# @markdown 模型名\n",
|
285 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
286 |
+
"# @markdown 采样率\n",
|
287 |
+
"BITRATE = 48000 # @param {type:\"integer\"}\n",
|
288 |
+
"# @markdown 使用的进程数\n",
|
289 |
+
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
|
290 |
+
"\n",
|
291 |
+
"!python3 trainset_preprocess_pipeline_print.py /content/dataset {BITRATE} {THREADCOUNT} logs/{MODELNAME} True"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": null,
|
297 |
+
"metadata": {
|
298 |
+
"id": "CrxJqzAUKmPJ"
|
299 |
+
},
|
300 |
+
"outputs": [],
|
301 |
+
"source": [
|
302 |
+
"# @title 手动提取特征(不推荐)\n",
|
303 |
+
"# @markdown 模型名\n",
|
304 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
305 |
+
"# @markdown 使用的进程数\n",
|
306 |
+
"THREADCOUNT = 8 # @param {type:\"integer\"}\n",
|
307 |
+
"# @markdown 音高提取算法\n",
|
308 |
+
"ALGO = \"harvest\" # @param {type:\"string\"}\n",
|
309 |
+
"\n",
|
310 |
+
"!python3 extract_f0_print.py logs/{MODELNAME} {THREADCOUNT} {ALGO}\n",
|
311 |
+
"\n",
|
312 |
+
"!python3 extract_feature_print.py cpu 1 0 0 logs/{MODELNAME}"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"cell_type": "code",
|
317 |
+
"execution_count": null,
|
318 |
+
"metadata": {
|
319 |
+
"id": "IMLPLKOaKj58"
|
320 |
+
},
|
321 |
+
"outputs": [],
|
322 |
+
"source": [
|
323 |
+
"# @title 手动训练(不推荐)\n",
|
324 |
+
"# @markdown 模型名\n",
|
325 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
326 |
+
"# @markdown 使用的GPU\n",
|
327 |
+
"USEGPU = \"0\" # @param {type:\"string\"}\n",
|
328 |
+
"# @markdown 批大小\n",
|
329 |
+
"BATCHSIZE = 32 # @param {type:\"integer\"}\n",
|
330 |
+
"# @markdown 停止的epoch\n",
|
331 |
+
"MODELEPOCH = 3200 # @param {type:\"integer\"}\n",
|
332 |
+
"# @markdown 保存epoch间隔\n",
|
333 |
+
"EPOCHSAVE = 100 # @param {type:\"integer\"}\n",
|
334 |
+
"# @markdown 采样率\n",
|
335 |
+
"MODELSAMPLE = \"48k\" # @param {type:\"string\"}\n",
|
336 |
+
"# @markdown 是否缓存训练集\n",
|
337 |
+
"CACHEDATA = 1 # @param {type:\"integer\"}\n",
|
338 |
+
"# @markdown 是否仅保存最新的ckpt文件\n",
|
339 |
+
"ONLYLATEST = 0 # @param {type:\"integer\"}\n",
|
340 |
+
"\n",
|
341 |
+
"!python3 train_nsf_sim_cache_sid_load_pretrain.py -e lulu -sr {MODELSAMPLE} -f0 1 -bs {BATCHSIZE} -g {USEGPU} -te {MODELEPOCH} -se {EPOCHSAVE} -pg pretrained/f0G{MODELSAMPLE}.pth -pd pretrained/f0D{MODELSAMPLE}.pth -l {ONLYLATEST} -c {CACHEDATA}"
|
342 |
+
]
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"cell_type": "code",
|
346 |
+
"execution_count": null,
|
347 |
+
"metadata": {
|
348 |
+
"id": "haYA81hySuDl"
|
349 |
+
},
|
350 |
+
"outputs": [],
|
351 |
+
"source": [
|
352 |
+
"# @title 删除其它pth,只留选中的(慎点,仔细看代码)\n",
|
353 |
+
"# @markdown 模型名\n",
|
354 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
355 |
+
"# @markdown 选中模型epoch\n",
|
356 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
357 |
+
"\n",
|
358 |
+
"!echo \"备份选中的模型。。。\"\n",
|
359 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
360 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
361 |
+
"\n",
|
362 |
+
"!echo \"正在删除。。。\"\n",
|
363 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
364 |
+
"!rm /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*.pth\n",
|
365 |
+
"\n",
|
366 |
+
"!echo \"恢复选中的模型。。。\"\n",
|
367 |
+
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
368 |
+
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
369 |
+
"\n",
|
370 |
+
"!echo \"删除完成\"\n",
|
371 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
|
372 |
+
]
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "code",
|
376 |
+
"execution_count": null,
|
377 |
+
"metadata": {
|
378 |
+
"id": "QhSiPTVPoIRh"
|
379 |
+
},
|
380 |
+
"outputs": [],
|
381 |
+
"source": [
|
382 |
+
"# @title 清除项目下所有文件,只留选中的模型(慎点,仔细看代码)\n",
|
383 |
+
"# @markdown 模型名\n",
|
384 |
+
"MODELNAME = \"lulu\" # @param {type:\"string\"}\n",
|
385 |
+
"# @markdown 选中模型epoch\n",
|
386 |
+
"MODELEPOCH = 9600 # @param {type:\"integer\"}\n",
|
387 |
+
"\n",
|
388 |
+
"!echo \"备份选中的模型。。。\"\n",
|
389 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth /content/{MODELNAME}_D_{MODELEPOCH}.pth\n",
|
390 |
+
"!cp /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth /content/{MODELNAME}_G_{MODELEPOCH}.pth\n",
|
391 |
+
"\n",
|
392 |
+
"!echo \"正在删除。。。\"\n",
|
393 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}\n",
|
394 |
+
"!rm -rf /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/*\n",
|
395 |
+
"\n",
|
396 |
+
"!echo \"恢复选中的模型。。。\"\n",
|
397 |
+
"!mv /content/{MODELNAME}_D_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/G_{MODELEPOCH}.pth\n",
|
398 |
+
"!mv /content/{MODELNAME}_G_{MODELEPOCH}.pth /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}/D_{MODELEPOCH}.pth\n",
|
399 |
+
"\n",
|
400 |
+
"!echo \"删除完成\"\n",
|
401 |
+
"!ls /content/Retrieval-based-Voice-Conversion-WebUI/logs/{MODELNAME}"
|
402 |
+
]
|
403 |
+
}
|
404 |
+
],
|
405 |
+
"metadata": {
|
406 |
+
"accelerator": "GPU",
|
407 |
+
"colab": {
|
408 |
+
"private_outputs": true,
|
409 |
+
"provenance": []
|
410 |
+
},
|
411 |
+
"gpuClass": "standard",
|
412 |
+
"kernelspec": {
|
413 |
+
"display_name": "Python 3",
|
414 |
+
"name": "python3"
|
415 |
+
},
|
416 |
+
"language_info": {
|
417 |
+
"name": "python"
|
418 |
+
}
|
419 |
+
},
|
420 |
+
"nbformat": 4,
|
421 |
+
"nbformat_minor": 0
|
422 |
+
}
|
a.png
ADDED
![]() |
app.py
ADDED
@@ -0,0 +1,1441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
import datetime, subprocess
|
3 |
+
from mega import Mega
|
4 |
+
now_dir = os.getcwd()
|
5 |
+
sys.path.append(now_dir)
|
6 |
+
import logging
|
7 |
+
import shutil
|
8 |
+
import threading
|
9 |
+
import traceback
|
10 |
+
import warnings
|
11 |
+
from random import shuffle
|
12 |
+
from subprocess import Popen
|
13 |
+
from time import sleep
|
14 |
+
import json
|
15 |
+
import pathlib
|
16 |
+
|
17 |
+
import fairseq
|
18 |
+
import faiss
|
19 |
+
import gradio as gr
|
20 |
+
import numpy as np
|
21 |
+
import torch
|
22 |
+
from dotenv import load_dotenv
|
23 |
+
from sklearn.cluster import MiniBatchKMeans
|
24 |
+
|
25 |
+
from configs.config import Config
|
26 |
+
from i18n.i18n import I18nAuto
|
27 |
+
from infer.lib.train.process_ckpt import (
|
28 |
+
change_info,
|
29 |
+
extract_small_model,
|
30 |
+
merge,
|
31 |
+
show_info,
|
32 |
+
)
|
33 |
+
from infer.modules.uvr5.modules import uvr
|
34 |
+
from infer.modules.vc.modules import VC
|
35 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
36 |
+
|
37 |
+
logger = logging.getLogger(__name__)
|
38 |
+
|
39 |
+
tmp = os.path.join(now_dir, "TEMP")
|
40 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
41 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
42 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/uvr5_pack" % (now_dir), ignore_errors=True)
|
43 |
+
os.makedirs(tmp, exist_ok=True)
|
44 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
45 |
+
os.makedirs(os.path.join(now_dir, "assets/weights"), exist_ok=True)
|
46 |
+
os.environ["TEMP"] = tmp
|
47 |
+
warnings.filterwarnings("ignore")
|
48 |
+
torch.manual_seed(114514)
|
49 |
+
|
50 |
+
|
51 |
+
load_dotenv()
|
52 |
+
config = Config()
|
53 |
+
vc = VC(config)
|
54 |
+
|
55 |
+
if config.dml == True:
|
56 |
+
|
57 |
+
def forward_dml(ctx, x, scale):
|
58 |
+
ctx.scale = scale
|
59 |
+
res = x.clone().detach()
|
60 |
+
return res
|
61 |
+
|
62 |
+
fairseq.modules.grad_multiply.GradMultiply.forward = forward_dml
|
63 |
+
i18n = I18nAuto()
|
64 |
+
logger.info(i18n)
|
65 |
+
# 判断是否有能用来训练和加速推理的N卡
|
66 |
+
ngpu = torch.cuda.device_count()
|
67 |
+
gpu_infos = []
|
68 |
+
mem = []
|
69 |
+
if_gpu_ok = False
|
70 |
+
|
71 |
+
if torch.cuda.is_available() or ngpu != 0:
|
72 |
+
for i in range(ngpu):
|
73 |
+
gpu_name = torch.cuda.get_device_name(i)
|
74 |
+
if any(
|
75 |
+
value in gpu_name.upper()
|
76 |
+
for value in [
|
77 |
+
"10",
|
78 |
+
"16",
|
79 |
+
"20",
|
80 |
+
"30",
|
81 |
+
"40",
|
82 |
+
"A2",
|
83 |
+
"A3",
|
84 |
+
"A4",
|
85 |
+
"P4",
|
86 |
+
"A50",
|
87 |
+
"500",
|
88 |
+
"A60",
|
89 |
+
"70",
|
90 |
+
"80",
|
91 |
+
"90",
|
92 |
+
"M4",
|
93 |
+
"T4",
|
94 |
+
"TITAN",
|
95 |
+
]
|
96 |
+
):
|
97 |
+
# A10#A100#V100#A40#P40#M40#K80#A4500
|
98 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
99 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
100 |
+
mem.append(
|
101 |
+
int(
|
102 |
+
torch.cuda.get_device_properties(i).total_memory
|
103 |
+
/ 1024
|
104 |
+
/ 1024
|
105 |
+
/ 1024
|
106 |
+
+ 0.4
|
107 |
+
)
|
108 |
+
)
|
109 |
+
if if_gpu_ok and len(gpu_infos) > 0:
|
110 |
+
gpu_info = "\n".join(gpu_infos)
|
111 |
+
default_batch_size = min(mem) // 2
|
112 |
+
else:
|
113 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
114 |
+
default_batch_size = 1
|
115 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
116 |
+
|
117 |
+
|
118 |
+
class ToolButton(gr.Button, gr.components.FormComponent):
|
119 |
+
"""Small button with single emoji as text, fits inside gradio forms"""
|
120 |
+
|
121 |
+
def __init__(self, **kwargs):
|
122 |
+
super().__init__(variant="tool", **kwargs)
|
123 |
+
|
124 |
+
def get_block_name(self):
|
125 |
+
return "button"
|
126 |
+
|
127 |
+
|
128 |
+
weight_root = os.getenv("weight_root")
|
129 |
+
weight_uvr5_root = os.getenv("weight_uvr5_root")
|
130 |
+
index_root = os.getenv("index_root")
|
131 |
+
|
132 |
+
names = []
|
133 |
+
for name in os.listdir(weight_root):
|
134 |
+
if name.endswith(".pth"):
|
135 |
+
names.append(name)
|
136 |
+
index_paths = []
|
137 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
138 |
+
for name in files:
|
139 |
+
if name.endswith(".index") and "trained" not in name:
|
140 |
+
index_paths.append("%s/%s" % (root, name))
|
141 |
+
uvr5_names = []
|
142 |
+
for name in os.listdir(weight_uvr5_root):
|
143 |
+
if name.endswith(".pth") or "onnx" in name:
|
144 |
+
uvr5_names.append(name.replace(".pth", ""))
|
145 |
+
|
146 |
+
|
147 |
+
def change_choices():
|
148 |
+
names = []
|
149 |
+
for name in os.listdir(weight_root):
|
150 |
+
if name.endswith(".pth"):
|
151 |
+
names.append(name)
|
152 |
+
index_paths = []
|
153 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
154 |
+
for name in files:
|
155 |
+
if name.endswith(".index") and "trained" not in name:
|
156 |
+
index_paths.append("%s/%s" % (root, name))
|
157 |
+
audio_files=[]
|
158 |
+
for filename in os.listdir("./audios"):
|
159 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
160 |
+
audio_files.append('./audios/'+filename)
|
161 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
162 |
+
"choices": sorted(index_paths),
|
163 |
+
"__type__": "update",
|
164 |
+
}, {"choices": sorted(audio_files), "__type__": "update"}
|
165 |
+
|
166 |
+
def clean():
|
167 |
+
return {"value": "", "__type__": "update"}
|
168 |
+
|
169 |
+
|
170 |
+
def export_onnx():
|
171 |
+
from infer.modules.onnx.export import export_onnx as eo
|
172 |
+
|
173 |
+
eo()
|
174 |
+
|
175 |
+
|
176 |
+
sr_dict = {
|
177 |
+
"32k": 32000,
|
178 |
+
"40k": 40000,
|
179 |
+
"48k": 48000,
|
180 |
+
}
|
181 |
+
|
182 |
+
|
183 |
+
def if_done(done, p):
|
184 |
+
while 1:
|
185 |
+
if p.poll() is None:
|
186 |
+
sleep(0.5)
|
187 |
+
else:
|
188 |
+
break
|
189 |
+
done[0] = True
|
190 |
+
|
191 |
+
|
192 |
+
def if_done_multi(done, ps):
|
193 |
+
while 1:
|
194 |
+
# poll==None代表进程未结束
|
195 |
+
# 只要有一个进程未结束都不停
|
196 |
+
flag = 1
|
197 |
+
for p in ps:
|
198 |
+
if p.poll() is None:
|
199 |
+
flag = 0
|
200 |
+
sleep(0.5)
|
201 |
+
break
|
202 |
+
if flag == 1:
|
203 |
+
break
|
204 |
+
done[0] = True
|
205 |
+
|
206 |
+
|
207 |
+
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
|
208 |
+
sr = sr_dict[sr]
|
209 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
210 |
+
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
|
211 |
+
f.close()
|
212 |
+
per = 3.0 if config.is_half else 3.7
|
213 |
+
cmd = '"%s" infer/modules/train/preprocess.py "%s" %s %s "%s/logs/%s" %s %.1f' % (
|
214 |
+
config.python_cmd,
|
215 |
+
trainset_dir,
|
216 |
+
sr,
|
217 |
+
n_p,
|
218 |
+
now_dir,
|
219 |
+
exp_dir,
|
220 |
+
config.noparallel,
|
221 |
+
per,
|
222 |
+
)
|
223 |
+
logger.info(cmd)
|
224 |
+
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
|
225 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
226 |
+
done = [False]
|
227 |
+
threading.Thread(
|
228 |
+
target=if_done,
|
229 |
+
args=(
|
230 |
+
done,
|
231 |
+
p,
|
232 |
+
),
|
233 |
+
).start()
|
234 |
+
while 1:
|
235 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
236 |
+
yield (f.read())
|
237 |
+
sleep(1)
|
238 |
+
if done[0]:
|
239 |
+
break
|
240 |
+
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
|
241 |
+
log = f.read()
|
242 |
+
logger.info(log)
|
243 |
+
yield log
|
244 |
+
|
245 |
+
|
246 |
+
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
|
247 |
+
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, gpus_rmvpe):
|
248 |
+
gpus = gpus.split("-")
|
249 |
+
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
|
250 |
+
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
|
251 |
+
f.close()
|
252 |
+
if if_f0:
|
253 |
+
if f0method != "rmvpe_gpu":
|
254 |
+
cmd = (
|
255 |
+
'"%s" infer/modules/train/extract/extract_f0_print.py "%s/logs/%s" %s %s'
|
256 |
+
% (
|
257 |
+
config.python_cmd,
|
258 |
+
now_dir,
|
259 |
+
exp_dir,
|
260 |
+
n_p,
|
261 |
+
f0method,
|
262 |
+
)
|
263 |
+
)
|
264 |
+
logger.info(cmd)
|
265 |
+
p = Popen(
|
266 |
+
cmd, shell=True, cwd=now_dir
|
267 |
+
) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
|
268 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
269 |
+
done = [False]
|
270 |
+
threading.Thread(
|
271 |
+
target=if_done,
|
272 |
+
args=(
|
273 |
+
done,
|
274 |
+
p,
|
275 |
+
),
|
276 |
+
).start()
|
277 |
+
else:
|
278 |
+
if gpus_rmvpe != "-":
|
279 |
+
gpus_rmvpe = gpus_rmvpe.split("-")
|
280 |
+
leng = len(gpus_rmvpe)
|
281 |
+
ps = []
|
282 |
+
for idx, n_g in enumerate(gpus_rmvpe):
|
283 |
+
cmd = (
|
284 |
+
'"%s" infer/modules/train/extract/extract_f0_rmvpe.py %s %s %s "%s/logs/%s" %s '
|
285 |
+
% (
|
286 |
+
config.python_cmd,
|
287 |
+
leng,
|
288 |
+
idx,
|
289 |
+
n_g,
|
290 |
+
now_dir,
|
291 |
+
exp_dir,
|
292 |
+
config.is_half,
|
293 |
+
)
|
294 |
+
)
|
295 |
+
logger.info(cmd)
|
296 |
+
p = Popen(
|
297 |
+
cmd, shell=True, cwd=now_dir
|
298 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
299 |
+
ps.append(p)
|
300 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
301 |
+
done = [False]
|
302 |
+
threading.Thread(
|
303 |
+
target=if_done_multi, #
|
304 |
+
args=(
|
305 |
+
done,
|
306 |
+
ps,
|
307 |
+
),
|
308 |
+
).start()
|
309 |
+
else:
|
310 |
+
cmd = (
|
311 |
+
config.python_cmd
|
312 |
+
+ ' infer/modules/train/extract/extract_f0_rmvpe_dml.py "%s/logs/%s" '
|
313 |
+
% (
|
314 |
+
now_dir,
|
315 |
+
exp_dir,
|
316 |
+
)
|
317 |
+
)
|
318 |
+
logger.info(cmd)
|
319 |
+
p = Popen(
|
320 |
+
cmd, shell=True, cwd=now_dir
|
321 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
322 |
+
p.wait()
|
323 |
+
done = [True]
|
324 |
+
while 1:
|
325 |
+
with open(
|
326 |
+
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
|
327 |
+
) as f:
|
328 |
+
yield (f.read())
|
329 |
+
sleep(1)
|
330 |
+
if done[0]:
|
331 |
+
break
|
332 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
333 |
+
log = f.read()
|
334 |
+
logger.info(log)
|
335 |
+
yield log
|
336 |
+
####对不同part分别开多进程
|
337 |
+
"""
|
338 |
+
n_part=int(sys.argv[1])
|
339 |
+
i_part=int(sys.argv[2])
|
340 |
+
i_gpu=sys.argv[3]
|
341 |
+
exp_dir=sys.argv[4]
|
342 |
+
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
|
343 |
+
"""
|
344 |
+
leng = len(gpus)
|
345 |
+
ps = []
|
346 |
+
for idx, n_g in enumerate(gpus):
|
347 |
+
cmd = (
|
348 |
+
'"%s" infer/modules/train/extract_feature_print.py %s %s %s %s "%s/logs/%s" %s'
|
349 |
+
% (
|
350 |
+
config.python_cmd,
|
351 |
+
config.device,
|
352 |
+
leng,
|
353 |
+
idx,
|
354 |
+
n_g,
|
355 |
+
now_dir,
|
356 |
+
exp_dir,
|
357 |
+
version19,
|
358 |
+
)
|
359 |
+
)
|
360 |
+
logger.info(cmd)
|
361 |
+
p = Popen(
|
362 |
+
cmd, shell=True, cwd=now_dir
|
363 |
+
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
|
364 |
+
ps.append(p)
|
365 |
+
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
|
366 |
+
done = [False]
|
367 |
+
threading.Thread(
|
368 |
+
target=if_done_multi,
|
369 |
+
args=(
|
370 |
+
done,
|
371 |
+
ps,
|
372 |
+
),
|
373 |
+
).start()
|
374 |
+
while 1:
|
375 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
376 |
+
yield (f.read())
|
377 |
+
sleep(1)
|
378 |
+
if done[0]:
|
379 |
+
break
|
380 |
+
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
|
381 |
+
log = f.read()
|
382 |
+
logger.info(log)
|
383 |
+
yield log
|
384 |
+
|
385 |
+
|
386 |
+
def get_pretrained_models(path_str, f0_str, sr2):
|
387 |
+
if_pretrained_generator_exist = os.access(
|
388 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
389 |
+
)
|
390 |
+
if_pretrained_discriminator_exist = os.access(
|
391 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK
|
392 |
+
)
|
393 |
+
if not if_pretrained_generator_exist:
|
394 |
+
logger.warn(
|
395 |
+
"assets/pretrained%s/%sG%s.pth not exist, will not use pretrained model",
|
396 |
+
path_str,
|
397 |
+
f0_str,
|
398 |
+
sr2,
|
399 |
+
)
|
400 |
+
if not if_pretrained_discriminator_exist:
|
401 |
+
logger.warn(
|
402 |
+
"assets/pretrained%s/%sD%s.pth not exist, will not use pretrained model",
|
403 |
+
path_str,
|
404 |
+
f0_str,
|
405 |
+
sr2,
|
406 |
+
)
|
407 |
+
return (
|
408 |
+
"assets/pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)
|
409 |
+
if if_pretrained_generator_exist
|
410 |
+
else "",
|
411 |
+
"assets/pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)
|
412 |
+
if if_pretrained_discriminator_exist
|
413 |
+
else "",
|
414 |
+
)
|
415 |
+
|
416 |
+
|
417 |
+
def change_sr2(sr2, if_f0_3, version19):
|
418 |
+
path_str = "" if version19 == "v1" else "_v2"
|
419 |
+
f0_str = "f0" if if_f0_3 else ""
|
420 |
+
return get_pretrained_models(path_str, f0_str, sr2)
|
421 |
+
|
422 |
+
|
423 |
+
def change_version19(sr2, if_f0_3, version19):
|
424 |
+
path_str = "" if version19 == "v1" else "_v2"
|
425 |
+
if sr2 == "32k" and version19 == "v1":
|
426 |
+
sr2 = "40k"
|
427 |
+
to_return_sr2 = (
|
428 |
+
{"choices": ["40k", "48k"], "__type__": "update", "value": sr2}
|
429 |
+
if version19 == "v1"
|
430 |
+
else {"choices": ["40k", "48k", "32k"], "__type__": "update", "value": sr2}
|
431 |
+
)
|
432 |
+
f0_str = "f0" if if_f0_3 else ""
|
433 |
+
return (
|
434 |
+
*get_pretrained_models(path_str, f0_str, sr2),
|
435 |
+
to_return_sr2,
|
436 |
+
)
|
437 |
+
|
438 |
+
|
439 |
+
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
|
440 |
+
path_str = "" if version19 == "v1" else "_v2"
|
441 |
+
return (
|
442 |
+
{"visible": if_f0_3, "__type__": "update"},
|
443 |
+
*get_pretrained_models(path_str, "f0", sr2),
|
444 |
+
)
|
445 |
+
|
446 |
+
|
447 |
+
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
|
448 |
+
def click_train(
|
449 |
+
exp_dir1,
|
450 |
+
sr2,
|
451 |
+
if_f0_3,
|
452 |
+
spk_id5,
|
453 |
+
save_epoch10,
|
454 |
+
total_epoch11,
|
455 |
+
batch_size12,
|
456 |
+
if_save_latest13,
|
457 |
+
pretrained_G14,
|
458 |
+
pretrained_D15,
|
459 |
+
gpus16,
|
460 |
+
if_cache_gpu17,
|
461 |
+
if_save_every_weights18,
|
462 |
+
version19,
|
463 |
+
):
|
464 |
+
# 生成filelist
|
465 |
+
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
466 |
+
os.makedirs(exp_dir, exist_ok=True)
|
467 |
+
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
|
468 |
+
feature_dir = (
|
469 |
+
"%s/3_feature256" % (exp_dir)
|
470 |
+
if version19 == "v1"
|
471 |
+
else "%s/3_feature768" % (exp_dir)
|
472 |
+
)
|
473 |
+
if if_f0_3:
|
474 |
+
f0_dir = "%s/2a_f0" % (exp_dir)
|
475 |
+
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
|
476 |
+
names = (
|
477 |
+
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
|
478 |
+
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
|
479 |
+
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
|
480 |
+
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
|
481 |
+
)
|
482 |
+
else:
|
483 |
+
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
|
484 |
+
[name.split(".")[0] for name in os.listdir(feature_dir)]
|
485 |
+
)
|
486 |
+
opt = []
|
487 |
+
for name in names:
|
488 |
+
if if_f0_3:
|
489 |
+
opt.append(
|
490 |
+
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
|
491 |
+
% (
|
492 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
493 |
+
name,
|
494 |
+
feature_dir.replace("\\", "\\\\"),
|
495 |
+
name,
|
496 |
+
f0_dir.replace("\\", "\\\\"),
|
497 |
+
name,
|
498 |
+
f0nsf_dir.replace("\\", "\\\\"),
|
499 |
+
name,
|
500 |
+
spk_id5,
|
501 |
+
)
|
502 |
+
)
|
503 |
+
else:
|
504 |
+
opt.append(
|
505 |
+
"%s/%s.wav|%s/%s.npy|%s"
|
506 |
+
% (
|
507 |
+
gt_wavs_dir.replace("\\", "\\\\"),
|
508 |
+
name,
|
509 |
+
feature_dir.replace("\\", "\\\\"),
|
510 |
+
name,
|
511 |
+
spk_id5,
|
512 |
+
)
|
513 |
+
)
|
514 |
+
fea_dim = 256 if version19 == "v1" else 768
|
515 |
+
if if_f0_3:
|
516 |
+
for _ in range(2):
|
517 |
+
opt.append(
|
518 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
|
519 |
+
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
|
520 |
+
)
|
521 |
+
else:
|
522 |
+
for _ in range(2):
|
523 |
+
opt.append(
|
524 |
+
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
|
525 |
+
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
|
526 |
+
)
|
527 |
+
shuffle(opt)
|
528 |
+
with open("%s/filelist.txt" % exp_dir, "w") as f:
|
529 |
+
f.write("\n".join(opt))
|
530 |
+
logger.debug("Write filelist done")
|
531 |
+
# 生成config#无需生成config
|
532 |
+
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
|
533 |
+
logger.info("Use gpus: %s", str(gpus16))
|
534 |
+
if pretrained_G14 == "":
|
535 |
+
logger.info("No pretrained Generator")
|
536 |
+
if pretrained_D15 == "":
|
537 |
+
logger.info("No pretrained Discriminator")
|
538 |
+
if version19 == "v1" or sr2 == "40k":
|
539 |
+
config_path = "v1/%s.json" % sr2
|
540 |
+
else:
|
541 |
+
config_path = "v2/%s.json" % sr2
|
542 |
+
config_save_path = os.path.join(exp_dir, "config.json")
|
543 |
+
if not pathlib.Path(config_save_path).exists():
|
544 |
+
with open(config_save_path, "w", encoding="utf-8") as f:
|
545 |
+
json.dump(
|
546 |
+
config.json_config[config_path],
|
547 |
+
f,
|
548 |
+
ensure_ascii=False,
|
549 |
+
indent=4,
|
550 |
+
sort_keys=True,
|
551 |
+
)
|
552 |
+
f.write("\n")
|
553 |
+
if gpus16:
|
554 |
+
cmd = (
|
555 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
556 |
+
% (
|
557 |
+
config.python_cmd,
|
558 |
+
exp_dir1,
|
559 |
+
sr2,
|
560 |
+
1 if if_f0_3 else 0,
|
561 |
+
batch_size12,
|
562 |
+
gpus16,
|
563 |
+
total_epoch11,
|
564 |
+
save_epoch10,
|
565 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
566 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
567 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
568 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
569 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
570 |
+
version19,
|
571 |
+
)
|
572 |
+
)
|
573 |
+
else:
|
574 |
+
cmd = (
|
575 |
+
'"%s" infer/modules/train/train.py -e "%s" -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s'
|
576 |
+
% (
|
577 |
+
config.python_cmd,
|
578 |
+
exp_dir1,
|
579 |
+
sr2,
|
580 |
+
1 if if_f0_3 else 0,
|
581 |
+
batch_size12,
|
582 |
+
total_epoch11,
|
583 |
+
save_epoch10,
|
584 |
+
"-pg %s" % pretrained_G14 if pretrained_G14 != "" else "",
|
585 |
+
"-pd %s" % pretrained_D15 if pretrained_D15 != "" else "",
|
586 |
+
1 if if_save_latest13 == i18n("是") else 0,
|
587 |
+
1 if if_cache_gpu17 == i18n("是") else 0,
|
588 |
+
1 if if_save_every_weights18 == i18n("是") else 0,
|
589 |
+
version19,
|
590 |
+
)
|
591 |
+
)
|
592 |
+
logger.info(cmd)
|
593 |
+
p = Popen(cmd, shell=True, cwd=now_dir)
|
594 |
+
p.wait()
|
595 |
+
return "训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"
|
596 |
+
|
597 |
+
|
598 |
+
# but4.click(train_index, [exp_dir1], info3)
|
599 |
+
def train_index(exp_dir1, version19):
|
600 |
+
# exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
|
601 |
+
exp_dir = "logs/%s" % (exp_dir1)
|
602 |
+
os.makedirs(exp_dir, exist_ok=True)
|
603 |
+
feature_dir = (
|
604 |
+
"%s/3_feature256" % (exp_dir)
|
605 |
+
if version19 == "v1"
|
606 |
+
else "%s/3_feature768" % (exp_dir)
|
607 |
+
)
|
608 |
+
if not os.path.exists(feature_dir):
|
609 |
+
return "请先进行特征提取!"
|
610 |
+
listdir_res = list(os.listdir(feature_dir))
|
611 |
+
if len(listdir_res) == 0:
|
612 |
+
return "请先进行特征提取!"
|
613 |
+
infos = []
|
614 |
+
npys = []
|
615 |
+
for name in sorted(listdir_res):
|
616 |
+
phone = np.load("%s/%s" % (feature_dir, name))
|
617 |
+
npys.append(phone)
|
618 |
+
big_npy = np.concatenate(npys, 0)
|
619 |
+
big_npy_idx = np.arange(big_npy.shape[0])
|
620 |
+
np.random.shuffle(big_npy_idx)
|
621 |
+
big_npy = big_npy[big_npy_idx]
|
622 |
+
if big_npy.shape[0] > 2e5:
|
623 |
+
infos.append("Trying doing kmeans %s shape to 10k centers." % big_npy.shape[0])
|
624 |
+
yield "\n".join(infos)
|
625 |
+
try:
|
626 |
+
big_npy = (
|
627 |
+
MiniBatchKMeans(
|
628 |
+
n_clusters=10000,
|
629 |
+
verbose=True,
|
630 |
+
batch_size=256 * config.n_cpu,
|
631 |
+
compute_labels=False,
|
632 |
+
init="random",
|
633 |
+
)
|
634 |
+
.fit(big_npy)
|
635 |
+
.cluster_centers_
|
636 |
+
)
|
637 |
+
except:
|
638 |
+
info = traceback.format_exc()
|
639 |
+
logger.info(info)
|
640 |
+
infos.append(info)
|
641 |
+
yield "\n".join(infos)
|
642 |
+
|
643 |
+
np.save("%s/total_fea.npy" % exp_dir, big_npy)
|
644 |
+
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
|
645 |
+
infos.append("%s,%s" % (big_npy.shape, n_ivf))
|
646 |
+
yield "\n".join(infos)
|
647 |
+
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
|
648 |
+
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
|
649 |
+
infos.append("training")
|
650 |
+
yield "\n".join(infos)
|
651 |
+
index_ivf = faiss.extract_index_ivf(index) #
|
652 |
+
index_ivf.nprobe = 1
|
653 |
+
index.train(big_npy)
|
654 |
+
faiss.write_index(
|
655 |
+
index,
|
656 |
+
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
657 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
658 |
+
)
|
659 |
+
|
660 |
+
infos.append("adding")
|
661 |
+
yield "\n".join(infos)
|
662 |
+
batch_size_add = 8192
|
663 |
+
for i in range(0, big_npy.shape[0], batch_size_add):
|
664 |
+
index.add(big_npy[i : i + batch_size_add])
|
665 |
+
faiss.write_index(
|
666 |
+
index,
|
667 |
+
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
668 |
+
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
|
669 |
+
)
|
670 |
+
infos.append(
|
671 |
+
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
|
672 |
+
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
|
673 |
+
)
|
674 |
+
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
|
675 |
+
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
|
676 |
+
yield "\n".join(infos)
|
677 |
+
|
678 |
+
|
679 |
+
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
|
680 |
+
def train1key(
|
681 |
+
exp_dir1,
|
682 |
+
sr2,
|
683 |
+
if_f0_3,
|
684 |
+
trainset_dir4,
|
685 |
+
spk_id5,
|
686 |
+
np7,
|
687 |
+
f0method8,
|
688 |
+
save_epoch10,
|
689 |
+
total_epoch11,
|
690 |
+
batch_size12,
|
691 |
+
if_save_latest13,
|
692 |
+
pretrained_G14,
|
693 |
+
pretrained_D15,
|
694 |
+
gpus16,
|
695 |
+
if_cache_gpu17,
|
696 |
+
if_save_every_weights18,
|
697 |
+
version19,
|
698 |
+
gpus_rmvpe,
|
699 |
+
):
|
700 |
+
infos = []
|
701 |
+
|
702 |
+
def get_info_str(strr):
|
703 |
+
infos.append(strr)
|
704 |
+
return "\n".join(infos)
|
705 |
+
|
706 |
+
####### step1:处理数据
|
707 |
+
yield get_info_str(i18n("step1:正在处理数据"))
|
708 |
+
[get_info_str(_) for _ in preprocess_dataset(trainset_dir4, exp_dir1, sr2, np7)]
|
709 |
+
|
710 |
+
####### step2a:提取音高
|
711 |
+
yield get_info_str(i18n("step2:正在提取音高&正在提取特征"))
|
712 |
+
[
|
713 |
+
get_info_str(_)
|
714 |
+
for _ in extract_f0_feature(
|
715 |
+
gpus16, np7, f0method8, if_f0_3, exp_dir1, version19, gpus_rmvpe
|
716 |
+
)
|
717 |
+
]
|
718 |
+
|
719 |
+
####### step3a:训练模型
|
720 |
+
yield get_info_str(i18n("step3a:正在训练模型"))
|
721 |
+
click_train(
|
722 |
+
exp_dir1,
|
723 |
+
sr2,
|
724 |
+
if_f0_3,
|
725 |
+
spk_id5,
|
726 |
+
save_epoch10,
|
727 |
+
total_epoch11,
|
728 |
+
batch_size12,
|
729 |
+
if_save_latest13,
|
730 |
+
pretrained_G14,
|
731 |
+
pretrained_D15,
|
732 |
+
gpus16,
|
733 |
+
if_cache_gpu17,
|
734 |
+
if_save_every_weights18,
|
735 |
+
version19,
|
736 |
+
)
|
737 |
+
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
|
738 |
+
|
739 |
+
####### step3b:训练索引
|
740 |
+
[get_info_str(_) for _ in train_index(exp_dir1, version19)]
|
741 |
+
yield get_info_str(i18n("全流程结束!"))
|
742 |
+
|
743 |
+
|
744 |
+
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
|
745 |
+
def change_info_(ckpt_path):
|
746 |
+
if not os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log")):
|
747 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
748 |
+
try:
|
749 |
+
with open(
|
750 |
+
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
|
751 |
+
) as f:
|
752 |
+
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
|
753 |
+
sr, f0 = info["sample_rate"], info["if_f0"]
|
754 |
+
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
|
755 |
+
return sr, str(f0), version
|
756 |
+
except:
|
757 |
+
traceback.print_exc()
|
758 |
+
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
|
759 |
+
|
760 |
+
|
761 |
+
F0GPUVisible = config.dml == False
|
762 |
+
|
763 |
+
|
764 |
+
def change_f0_method(f0method8):
|
765 |
+
if f0method8 == "rmvpe_gpu":
|
766 |
+
visible = F0GPUVisible
|
767 |
+
else:
|
768 |
+
visible = False
|
769 |
+
return {"visible": visible, "__type__": "update"}
|
770 |
+
|
771 |
+
def find_model():
|
772 |
+
if len(names) > 0:
|
773 |
+
vc.get_vc(sorted(names)[0],None,None)
|
774 |
+
return sorted(names)[0]
|
775 |
+
else:
|
776 |
+
try:
|
777 |
+
gr.Info("Do not forget to choose a model.")
|
778 |
+
except:
|
779 |
+
pass
|
780 |
+
return ''
|
781 |
+
|
782 |
+
def find_audios(index=False):
|
783 |
+
audio_files=[]
|
784 |
+
if not os.path.exists('./audios'): os.mkdir("./audios")
|
785 |
+
for filename in os.listdir("./audios"):
|
786 |
+
if filename.endswith(('.wav','.mp3','.ogg')):
|
787 |
+
audio_files.append("./audios/"+filename)
|
788 |
+
if index:
|
789 |
+
if len(audio_files) > 0: return sorted(audio_files)[0]
|
790 |
+
else: return ""
|
791 |
+
elif len(audio_files) > 0: return sorted(audio_files)
|
792 |
+
else: return []
|
793 |
+
|
794 |
+
def get_index():
|
795 |
+
if find_model() != '':
|
796 |
+
chosen_model=sorted(names)[0].split(".")[0]
|
797 |
+
logs_path="./logs/"+chosen_model
|
798 |
+
if os.path.exists(logs_path):
|
799 |
+
for file in os.listdir(logs_path):
|
800 |
+
if file.endswith(".index"):
|
801 |
+
return os.path.join(logs_path, file)
|
802 |
+
return ''
|
803 |
+
else:
|
804 |
+
return ''
|
805 |
+
|
806 |
+
def get_indexes():
|
807 |
+
indexes_list=[]
|
808 |
+
for dirpath, dirnames, filenames in os.walk("./logs/"):
|
809 |
+
for filename in filenames:
|
810 |
+
if filename.endswith(".index"):
|
811 |
+
indexes_list.append(os.path.join(dirpath,filename))
|
812 |
+
if len(indexes_list) > 0:
|
813 |
+
return indexes_list
|
814 |
+
else:
|
815 |
+
return ''
|
816 |
+
|
817 |
+
def save_wav(file):
|
818 |
+
try:
|
819 |
+
file_path=file.name
|
820 |
+
shutil.move(file_path,'./audios')
|
821 |
+
return './audios/'+os.path.basename(file_path)
|
822 |
+
except AttributeError:
|
823 |
+
try:
|
824 |
+
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
|
825 |
+
new_path='./audios/'+new_name
|
826 |
+
shutil.move(file,new_path)
|
827 |
+
return new_path
|
828 |
+
except TypeError:
|
829 |
+
return None
|
830 |
+
|
831 |
+
def download_from_url(url, model):
|
832 |
+
if url == '':
|
833 |
+
return "URL cannot be left empty."
|
834 |
+
if model =='':
|
835 |
+
return "You need to name your model. For example: My-Model"
|
836 |
+
url = url.strip()
|
837 |
+
zip_dirs = ["zips", "unzips"]
|
838 |
+
for directory in zip_dirs:
|
839 |
+
if os.path.exists(directory):
|
840 |
+
shutil.rmtree(directory)
|
841 |
+
os.makedirs("zips", exist_ok=True)
|
842 |
+
os.makedirs("unzips", exist_ok=True)
|
843 |
+
zipfile = model + '.zip'
|
844 |
+
zipfile_path = './zips/' + zipfile
|
845 |
+
try:
|
846 |
+
if "drive.google.com" in url:
|
847 |
+
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
|
848 |
+
elif "mega.nz" in url:
|
849 |
+
m = Mega()
|
850 |
+
m.download_url(url, './zips')
|
851 |
+
else:
|
852 |
+
subprocess.run(["wget", url, "-O", zipfile_path])
|
853 |
+
for filename in os.listdir("./zips"):
|
854 |
+
if filename.endswith(".zip"):
|
855 |
+
zipfile_path = os.path.join("./zips/",filename)
|
856 |
+
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
|
857 |
+
else:
|
858 |
+
return "No zipfile found."
|
859 |
+
for root, dirs, files in os.walk('./unzips'):
|
860 |
+
for file in files:
|
861 |
+
file_path = os.path.join(root, file)
|
862 |
+
if file.endswith(".index"):
|
863 |
+
os.mkdir(f'./logs/{model}')
|
864 |
+
shutil.copy2(file_path,f'./logs/{model}')
|
865 |
+
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
|
866 |
+
shutil.copy(file_path,f'./assets/weights/{model}.pth')
|
867 |
+
shutil.rmtree("zips")
|
868 |
+
shutil.rmtree("unzips")
|
869 |
+
return "Success."
|
870 |
+
except:
|
871 |
+
return "There's been an error."
|
872 |
+
|
873 |
+
def upload_to_dataset(files, dir):
|
874 |
+
if dir == '':
|
875 |
+
dir = './dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
876 |
+
if not os.path.exists(dir):
|
877 |
+
os.makedirs(dir)
|
878 |
+
for file in files:
|
879 |
+
path=file.name
|
880 |
+
shutil.copy2(path,dir)
|
881 |
+
try:
|
882 |
+
gr.Info(i18n("处理数据"))
|
883 |
+
except:
|
884 |
+
pass
|
885 |
+
return i18n("处理数据"), {"value":dir,"__type__":"update"}
|
886 |
+
|
887 |
+
def download_model_files(model):
|
888 |
+
model_found = False
|
889 |
+
index_found = False
|
890 |
+
if os.path.exists(f'./assets/weights/{model}.pth'): model_found = True
|
891 |
+
if os.path.exists(f'./logs/{model}'):
|
892 |
+
for file in os.listdir(f'./logs/{model}'):
|
893 |
+
if file.endswith('.index') and 'added' in file:
|
894 |
+
log_file = file
|
895 |
+
index_found = True
|
896 |
+
if model_found and index_found:
|
897 |
+
return [f'./assets/weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
|
898 |
+
elif model_found and not index_found:
|
899 |
+
return f'./assets/weights/{model}.pth', "Could not find Index file."
|
900 |
+
elif index_found and not model_found:
|
901 |
+
return f'./logs/{model}/{log_file}', f'Make sure the Voice Name is correct. I could not find {model}.pth'
|
902 |
+
else:
|
903 |
+
return None, f'Could not find {model}.pth or corresponding Index file.'
|
904 |
+
|
905 |
+
with gr.Blocks(title="🔊",theme=gr.themes.Base(primary_hue="rose",neutral_hue="zinc")) as app:
|
906 |
+
with gr.Row():
|
907 |
+
gr.HTML("<img src='file/a.png' alt='image'>")
|
908 |
+
with gr.Tabs():
|
909 |
+
with gr.TabItem(i18n("模型推理")):
|
910 |
+
with gr.Row():
|
911 |
+
sid0 = gr.Dropdown(label=i18n("推理音色"), choices=sorted(names), value=find_model())
|
912 |
+
refresh_button = gr.Button(i18n("刷新音色列表和索引路径"), variant="primary")
|
913 |
+
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
|
914 |
+
spk_item = gr.Slider(
|
915 |
+
minimum=0,
|
916 |
+
maximum=2333,
|
917 |
+
step=1,
|
918 |
+
label=i18n("请选择说话人id"),
|
919 |
+
value=0,
|
920 |
+
visible=False,
|
921 |
+
interactive=True,
|
922 |
+
)
|
923 |
+
#clean_button.click(
|
924 |
+
# fn=clean, inputs=[], outputs=[sid0], api_name="infer_clean"
|
925 |
+
#)
|
926 |
+
vc_transform0 = gr.Number(
|
927 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
928 |
+
)
|
929 |
+
but0 = gr.Button(i18n("转换"), variant="primary")
|
930 |
+
with gr.Row():
|
931 |
+
with gr.Column():
|
932 |
+
with gr.Row():
|
933 |
+
dropbox = gr.File(label="Drop your audio here & hit the Reload button.")
|
934 |
+
with gr.Row():
|
935 |
+
record_button=gr.Audio(source="microphone", label="OR Record audio.", type="filepath")
|
936 |
+
with gr.Row():
|
937 |
+
input_audio0 = gr.Dropdown(
|
938 |
+
label=i18n("输入待处理音频文件路径(默认是正确格式示例)"),
|
939 |
+
value=find_audios(True),
|
940 |
+
choices=find_audios()
|
941 |
+
)
|
942 |
+
record_button.change(fn=save_wav, inputs=[record_button], outputs=[input_audio0])
|
943 |
+
dropbox.upload(fn=save_wav, inputs=[dropbox], outputs=[input_audio0])
|
944 |
+
with gr.Column():
|
945 |
+
with gr.Accordion(label=i18n("自动检测index路径,下拉式选择(dropdown)"), open=False):
|
946 |
+
file_index2 = gr.Dropdown(
|
947 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
948 |
+
choices=get_indexes(),
|
949 |
+
interactive=True,
|
950 |
+
value=get_index()
|
951 |
+
)
|
952 |
+
index_rate1 = gr.Slider(
|
953 |
+
minimum=0,
|
954 |
+
maximum=1,
|
955 |
+
label=i18n("检索特征占比"),
|
956 |
+
value=0.66,
|
957 |
+
interactive=True,
|
958 |
+
)
|
959 |
+
vc_output2 = gr.Audio(label=i18n("输出音频(右下角三个点,点了可以下载)"))
|
960 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
961 |
+
f0method0 = gr.Radio(
|
962 |
+
label=i18n(
|
963 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
964 |
+
),
|
965 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
966 |
+
if config.dml == False
|
967 |
+
else ["pm", "harvest", "rmvpe"],
|
968 |
+
value="rmvpe",
|
969 |
+
interactive=True,
|
970 |
+
)
|
971 |
+
filter_radius0 = gr.Slider(
|
972 |
+
minimum=0,
|
973 |
+
maximum=7,
|
974 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
975 |
+
value=3,
|
976 |
+
step=1,
|
977 |
+
interactive=True,
|
978 |
+
)
|
979 |
+
resample_sr0 = gr.Slider(
|
980 |
+
minimum=0,
|
981 |
+
maximum=48000,
|
982 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
983 |
+
value=0,
|
984 |
+
step=1,
|
985 |
+
interactive=True,
|
986 |
+
visible=False
|
987 |
+
)
|
988 |
+
rms_mix_rate0 = gr.Slider(
|
989 |
+
minimum=0,
|
990 |
+
maximum=1,
|
991 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
992 |
+
value=0.21,
|
993 |
+
interactive=True,
|
994 |
+
)
|
995 |
+
protect0 = gr.Slider(
|
996 |
+
minimum=0,
|
997 |
+
maximum=0.5,
|
998 |
+
label=i18n(
|
999 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能���低索引效果"
|
1000 |
+
),
|
1001 |
+
value=0.33,
|
1002 |
+
step=0.01,
|
1003 |
+
interactive=True,
|
1004 |
+
)
|
1005 |
+
file_index1 = gr.Textbox(
|
1006 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
1007 |
+
value="",
|
1008 |
+
interactive=True,
|
1009 |
+
visible=False
|
1010 |
+
)
|
1011 |
+
refresh_button.click(
|
1012 |
+
fn=change_choices,
|
1013 |
+
inputs=[],
|
1014 |
+
outputs=[sid0, file_index2, input_audio0],
|
1015 |
+
api_name="infer_refresh",
|
1016 |
+
)
|
1017 |
+
# file_big_npy1 = gr.Textbox(
|
1018 |
+
# label=i18n("特征文件路径"),
|
1019 |
+
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1020 |
+
# interactive=True,
|
1021 |
+
# )
|
1022 |
+
with gr.Row():
|
1023 |
+
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
|
1024 |
+
with gr.Row():
|
1025 |
+
vc_output1 = gr.Textbox(label=i18n("输出信息"))
|
1026 |
+
but0.click(
|
1027 |
+
vc.vc_single,
|
1028 |
+
[
|
1029 |
+
spk_item,
|
1030 |
+
input_audio0,
|
1031 |
+
vc_transform0,
|
1032 |
+
f0_file,
|
1033 |
+
f0method0,
|
1034 |
+
file_index1,
|
1035 |
+
file_index2,
|
1036 |
+
# file_big_npy1,
|
1037 |
+
index_rate1,
|
1038 |
+
filter_radius0,
|
1039 |
+
resample_sr0,
|
1040 |
+
rms_mix_rate0,
|
1041 |
+
protect0,
|
1042 |
+
],
|
1043 |
+
[vc_output1, vc_output2],
|
1044 |
+
api_name="infer_convert",
|
1045 |
+
)
|
1046 |
+
with gr.Row():
|
1047 |
+
with gr.Accordion(open=False, label=i18n("批量转换, 输入待转换音频文件夹, 或上传多个音频文件, 在指定文件夹(默认opt)下输出转换的音频. ")):
|
1048 |
+
with gr.Row():
|
1049 |
+
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
|
1050 |
+
vc_transform1 = gr.Number(
|
1051 |
+
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
|
1052 |
+
)
|
1053 |
+
f0method1 = gr.Radio(
|
1054 |
+
label=i18n(
|
1055 |
+
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU,rmvpe效果最好且微吃GPU"
|
1056 |
+
),
|
1057 |
+
choices=["pm", "harvest", "crepe", "rmvpe"]
|
1058 |
+
if config.dml == False
|
1059 |
+
else ["pm", "harvest", "rmvpe"],
|
1060 |
+
value="pm",
|
1061 |
+
interactive=True,
|
1062 |
+
)
|
1063 |
+
with gr.Row():
|
1064 |
+
filter_radius1 = gr.Slider(
|
1065 |
+
minimum=0,
|
1066 |
+
maximum=7,
|
1067 |
+
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
|
1068 |
+
value=3,
|
1069 |
+
step=1,
|
1070 |
+
interactive=True,
|
1071 |
+
visible=False
|
1072 |
+
)
|
1073 |
+
with gr.Row():
|
1074 |
+
file_index3 = gr.Textbox(
|
1075 |
+
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
|
1076 |
+
value="",
|
1077 |
+
interactive=True,
|
1078 |
+
visible=False
|
1079 |
+
)
|
1080 |
+
file_index4 = gr.Dropdown(
|
1081 |
+
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
|
1082 |
+
choices=sorted(index_paths),
|
1083 |
+
interactive=True,
|
1084 |
+
visible=False
|
1085 |
+
)
|
1086 |
+
refresh_button.click(
|
1087 |
+
fn=lambda: change_choices()[1],
|
1088 |
+
inputs=[],
|
1089 |
+
outputs=file_index4,
|
1090 |
+
api_name="infer_refresh_batch",
|
1091 |
+
)
|
1092 |
+
# file_big_npy2 = gr.Textbox(
|
1093 |
+
# label=i18n("特征文件路径"),
|
1094 |
+
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
|
1095 |
+
# interactive=True,
|
1096 |
+
# )
|
1097 |
+
index_rate2 = gr.Slider(
|
1098 |
+
minimum=0,
|
1099 |
+
maximum=1,
|
1100 |
+
label=i18n("检索特征占比"),
|
1101 |
+
value=1,
|
1102 |
+
interactive=True,
|
1103 |
+
visible=False
|
1104 |
+
)
|
1105 |
+
with gr.Row():
|
1106 |
+
resample_sr1 = gr.Slider(
|
1107 |
+
minimum=0,
|
1108 |
+
maximum=48000,
|
1109 |
+
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
|
1110 |
+
value=0,
|
1111 |
+
step=1,
|
1112 |
+
interactive=True,
|
1113 |
+
visible=False
|
1114 |
+
)
|
1115 |
+
rms_mix_rate1 = gr.Slider(
|
1116 |
+
minimum=0,
|
1117 |
+
maximum=1,
|
1118 |
+
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
|
1119 |
+
value=0.21,
|
1120 |
+
interactive=True,
|
1121 |
+
)
|
1122 |
+
protect1 = gr.Slider(
|
1123 |
+
minimum=0,
|
1124 |
+
maximum=0.5,
|
1125 |
+
label=i18n(
|
1126 |
+
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
|
1127 |
+
),
|
1128 |
+
value=0.33,
|
1129 |
+
step=0.01,
|
1130 |
+
interactive=True,
|
1131 |
+
)
|
1132 |
+
with gr.Row():
|
1133 |
+
dir_input = gr.Textbox(
|
1134 |
+
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
|
1135 |
+
value="./audios",
|
1136 |
+
)
|
1137 |
+
inputs = gr.File(
|
1138 |
+
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
|
1139 |
+
)
|
1140 |
+
with gr.Row():
|
1141 |
+
format1 = gr.Radio(
|
1142 |
+
label=i18n("导出文件格式"),
|
1143 |
+
choices=["wav", "flac", "mp3", "m4a"],
|
1144 |
+
value="wav",
|
1145 |
+
interactive=True,
|
1146 |
+
)
|
1147 |
+
but1 = gr.Button(i18n("转换"), variant="primary")
|
1148 |
+
vc_output3 = gr.Textbox(label=i18n("输出信息"))
|
1149 |
+
but1.click(
|
1150 |
+
vc.vc_multi,
|
1151 |
+
[
|
1152 |
+
spk_item,
|
1153 |
+
dir_input,
|
1154 |
+
opt_input,
|
1155 |
+
inputs,
|
1156 |
+
vc_transform1,
|
1157 |
+
f0method1,
|
1158 |
+
file_index1,
|
1159 |
+
file_index2,
|
1160 |
+
# file_big_npy2,
|
1161 |
+
index_rate1,
|
1162 |
+
filter_radius1,
|
1163 |
+
resample_sr1,
|
1164 |
+
rms_mix_rate1,
|
1165 |
+
protect1,
|
1166 |
+
format1,
|
1167 |
+
],
|
1168 |
+
[vc_output3],
|
1169 |
+
api_name="infer_convert_batch",
|
1170 |
+
)
|
1171 |
+
sid0.change(
|
1172 |
+
fn=vc.get_vc,
|
1173 |
+
inputs=[sid0, protect0, protect1],
|
1174 |
+
outputs=[spk_item, protect0, protect1, file_index2, file_index4],
|
1175 |
+
)
|
1176 |
+
with gr.TabItem("Download Model"):
|
1177 |
+
with gr.Row():
|
1178 |
+
url=gr.Textbox(label="Enter the URL to the Model:")
|
1179 |
+
with gr.Row():
|
1180 |
+
model = gr.Textbox(label="Name your model:")
|
1181 |
+
download_button=gr.Button("Download")
|
1182 |
+
with gr.Row():
|
1183 |
+
status_bar=gr.Textbox(label="")
|
1184 |
+
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
|
1185 |
+
with gr.Row():
|
1186 |
+
gr.Markdown(
|
1187 |
+
"""
|
1188 |
+
❤️ If you use this and like it, help me keep it.❤️
|
1189 |
+
https://paypal.me/lesantillan
|
1190 |
+
"""
|
1191 |
+
)
|
1192 |
+
with gr.TabItem(i18n("训练")):
|
1193 |
+
with gr.Row():
|
1194 |
+
with gr.Column():
|
1195 |
+
exp_dir1 = gr.Textbox(label=i18n("输入实验名"), value="My-Voice")
|
1196 |
+
np7 = gr.Slider(
|
1197 |
+
minimum=0,
|
1198 |
+
maximum=config.n_cpu,
|
1199 |
+
step=1,
|
1200 |
+
label=i18n("提取音高和处理数据使用的CPU进程数"),
|
1201 |
+
value=int(np.ceil(config.n_cpu / 1.5)),
|
1202 |
+
interactive=True,
|
1203 |
+
)
|
1204 |
+
sr2 = gr.Radio(
|
1205 |
+
label=i18n("目标采样率"),
|
1206 |
+
choices=["40k", "48k"],
|
1207 |
+
value="40k",
|
1208 |
+
interactive=True,
|
1209 |
+
visible=False
|
1210 |
+
)
|
1211 |
+
if_f0_3 = gr.Radio(
|
1212 |
+
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
|
1213 |
+
choices=[True, False],
|
1214 |
+
value=True,
|
1215 |
+
interactive=True,
|
1216 |
+
visible=False
|
1217 |
+
)
|
1218 |
+
version19 = gr.Radio(
|
1219 |
+
label=i18n("版本"),
|
1220 |
+
choices=["v1", "v2"],
|
1221 |
+
value="v2",
|
1222 |
+
interactive=True,
|
1223 |
+
visible=False,
|
1224 |
+
)
|
1225 |
+
trainset_dir4 = gr.Textbox(
|
1226 |
+
label=i18n("输入训练文件夹路径"), value='./dataset/'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
1227 |
+
)
|
1228 |
+
easy_uploader = gr.Files(label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹"),file_types=['audio'])
|
1229 |
+
but1 = gr.Button(i18n("处理数据"), variant="primary")
|
1230 |
+
info1 = gr.Textbox(label=i18n("输出信息"), value="")
|
1231 |
+
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1, trainset_dir4])
|
1232 |
+
gpus6 = gr.Textbox(
|
1233 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1234 |
+
value=gpus,
|
1235 |
+
interactive=True,
|
1236 |
+
visible=F0GPUVisible,
|
1237 |
+
)
|
1238 |
+
gpu_info9 = gr.Textbox(
|
1239 |
+
label=i18n("显卡信息"), value=gpu_info, visible=F0GPUVisible
|
1240 |
+
)
|
1241 |
+
spk_id5 = gr.Slider(
|
1242 |
+
minimum=0,
|
1243 |
+
maximum=4,
|
1244 |
+
step=1,
|
1245 |
+
label=i18n("请指定说话人id"),
|
1246 |
+
value=0,
|
1247 |
+
interactive=True,
|
1248 |
+
visible=False
|
1249 |
+
)
|
1250 |
+
but1.click(
|
1251 |
+
preprocess_dataset,
|
1252 |
+
[trainset_dir4, exp_dir1, sr2, np7],
|
1253 |
+
[info1],
|
1254 |
+
api_name="train_preprocess",
|
1255 |
+
)
|
1256 |
+
with gr.Column():
|
1257 |
+
f0method8 = gr.Radio(
|
1258 |
+
label=i18n(
|
1259 |
+
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢,rmvpe效果最好且微吃CPU/GPU"
|
1260 |
+
),
|
1261 |
+
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
|
1262 |
+
value="rmvpe_gpu",
|
1263 |
+
interactive=True,
|
1264 |
+
)
|
1265 |
+
gpus_rmvpe = gr.Textbox(
|
1266 |
+
label=i18n(
|
1267 |
+
"rmvpe卡号配置:以-分隔输入使用的不同进程卡号,例如0-0-1使用在卡0上跑2个进程并在卡1上跑1个进程"
|
1268 |
+
),
|
1269 |
+
value="%s-%s" % (gpus, gpus),
|
1270 |
+
interactive=True,
|
1271 |
+
visible=F0GPUVisible,
|
1272 |
+
)
|
1273 |
+
but2 = gr.Button(i18n("特征提取"), variant="primary")
|
1274 |
+
info2 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=8)
|
1275 |
+
f0method8.change(
|
1276 |
+
fn=change_f0_method,
|
1277 |
+
inputs=[f0method8],
|
1278 |
+
outputs=[gpus_rmvpe],
|
1279 |
+
)
|
1280 |
+
but2.click(
|
1281 |
+
extract_f0_feature,
|
1282 |
+
[
|
1283 |
+
gpus6,
|
1284 |
+
np7,
|
1285 |
+
f0method8,
|
1286 |
+
if_f0_3,
|
1287 |
+
exp_dir1,
|
1288 |
+
version19,
|
1289 |
+
gpus_rmvpe,
|
1290 |
+
],
|
1291 |
+
[info2],
|
1292 |
+
api_name="train_extract_f0_feature",
|
1293 |
+
)
|
1294 |
+
with gr.Column():
|
1295 |
+
total_epoch11 = gr.Slider(
|
1296 |
+
minimum=2,
|
1297 |
+
maximum=1000,
|
1298 |
+
step=1,
|
1299 |
+
label=i18n("总训练轮数total_epoch"),
|
1300 |
+
value=150,
|
1301 |
+
interactive=True,
|
1302 |
+
)
|
1303 |
+
gpus16 = gr.Textbox(
|
1304 |
+
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
|
1305 |
+
value="0",
|
1306 |
+
interactive=True,
|
1307 |
+
visible=True
|
1308 |
+
)
|
1309 |
+
but3 = gr.Button(i18n("训练模型"), variant="primary")
|
1310 |
+
but4 = gr.Button(i18n("训练特征索引"), variant="primary")
|
1311 |
+
info3 = gr.Textbox(label=i18n("输出信息"), value="", max_lines=10)
|
1312 |
+
with gr.Accordion(label=i18n("常规设置"), open=False):
|
1313 |
+
save_epoch10 = gr.Slider(
|
1314 |
+
minimum=1,
|
1315 |
+
maximum=50,
|
1316 |
+
step=1,
|
1317 |
+
label=i18n("保存频率save_every_epoch"),
|
1318 |
+
value=25,
|
1319 |
+
interactive=True,
|
1320 |
+
)
|
1321 |
+
batch_size12 = gr.Slider(
|
1322 |
+
minimum=1,
|
1323 |
+
maximum=40,
|
1324 |
+
step=1,
|
1325 |
+
label=i18n("每张显卡的batch_size"),
|
1326 |
+
value=default_batch_size,
|
1327 |
+
interactive=True,
|
1328 |
+
)
|
1329 |
+
if_save_latest13 = gr.Radio(
|
1330 |
+
label=i18n("是否仅保存最新的ckpt文件以节省硬盘空间"),
|
1331 |
+
choices=[i18n("是"), i18n("否")],
|
1332 |
+
value=i18n("是"),
|
1333 |
+
interactive=True,
|
1334 |
+
visible=False
|
1335 |
+
)
|
1336 |
+
if_cache_gpu17 = gr.Radio(
|
1337 |
+
label=i18n(
|
1338 |
+
"是否缓存所有训练集至显存. 10min以下小数据可缓存以加速训练, 大数据缓存会炸显存也加不了多少速"
|
1339 |
+
),
|
1340 |
+
choices=[i18n("是"), i18n("否")],
|
1341 |
+
value=i18n("否"),
|
1342 |
+
interactive=True,
|
1343 |
+
)
|
1344 |
+
if_save_every_weights18 = gr.Radio(
|
1345 |
+
label=i18n("是否在每次保存时间点将最终小模型保存至weights文件夹"),
|
1346 |
+
choices=[i18n("是"), i18n("否")],
|
1347 |
+
value=i18n("是"),
|
1348 |
+
interactive=True,
|
1349 |
+
)
|
1350 |
+
with gr.Row():
|
1351 |
+
download_model = gr.Button('5.Download Model')
|
1352 |
+
with gr.Row():
|
1353 |
+
model_files = gr.Files(label='Your Model and Index file can be downloaded here:')
|
1354 |
+
download_model.click(fn=download_model_files, inputs=[exp_dir1], outputs=[model_files, info3])
|
1355 |
+
with gr.Row():
|
1356 |
+
pretrained_G14 = gr.Textbox(
|
1357 |
+
label=i18n("加载预训练底模G路径"),
|
1358 |
+
value="assets/pretrained_v2/f0G40k.pth",
|
1359 |
+
interactive=True,
|
1360 |
+
visible=False
|
1361 |
+
)
|
1362 |
+
pretrained_D15 = gr.Textbox(
|
1363 |
+
label=i18n("加载预训练底模D路径"),
|
1364 |
+
value="assets/pretrained_v2/f0D40k.pth",
|
1365 |
+
interactive=True,
|
1366 |
+
visible=False
|
1367 |
+
)
|
1368 |
+
sr2.change(
|
1369 |
+
change_sr2,
|
1370 |
+
[sr2, if_f0_3, version19],
|
1371 |
+
[pretrained_G14, pretrained_D15],
|
1372 |
+
)
|
1373 |
+
version19.change(
|
1374 |
+
change_version19,
|
1375 |
+
[sr2, if_f0_3, version19],
|
1376 |
+
[pretrained_G14, pretrained_D15, sr2],
|
1377 |
+
)
|
1378 |
+
if_f0_3.change(
|
1379 |
+
change_f0,
|
1380 |
+
[if_f0_3, sr2, version19],
|
1381 |
+
[f0method8, pretrained_G14, pretrained_D15],
|
1382 |
+
)
|
1383 |
+
with gr.Row():
|
1384 |
+
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
|
1385 |
+
but3.click(
|
1386 |
+
click_train,
|
1387 |
+
[
|
1388 |
+
exp_dir1,
|
1389 |
+
sr2,
|
1390 |
+
if_f0_3,
|
1391 |
+
spk_id5,
|
1392 |
+
save_epoch10,
|
1393 |
+
total_epoch11,
|
1394 |
+
batch_size12,
|
1395 |
+
if_save_latest13,
|
1396 |
+
pretrained_G14,
|
1397 |
+
pretrained_D15,
|
1398 |
+
gpus16,
|
1399 |
+
if_cache_gpu17,
|
1400 |
+
if_save_every_weights18,
|
1401 |
+
version19,
|
1402 |
+
],
|
1403 |
+
info3,
|
1404 |
+
api_name="train_start",
|
1405 |
+
)
|
1406 |
+
but4.click(train_index, [exp_dir1, version19], info3)
|
1407 |
+
but5.click(
|
1408 |
+
train1key,
|
1409 |
+
[
|
1410 |
+
exp_dir1,
|
1411 |
+
sr2,
|
1412 |
+
if_f0_3,
|
1413 |
+
trainset_dir4,
|
1414 |
+
spk_id5,
|
1415 |
+
np7,
|
1416 |
+
f0method8,
|
1417 |
+
save_epoch10,
|
1418 |
+
total_epoch11,
|
1419 |
+
batch_size12,
|
1420 |
+
if_save_latest13,
|
1421 |
+
pretrained_G14,
|
1422 |
+
pretrained_D15,
|
1423 |
+
gpus16,
|
1424 |
+
if_cache_gpu17,
|
1425 |
+
if_save_every_weights18,
|
1426 |
+
version19,
|
1427 |
+
gpus_rmvpe,
|
1428 |
+
],
|
1429 |
+
info3,
|
1430 |
+
api_name="train_start_all",
|
1431 |
+
)
|
1432 |
+
|
1433 |
+
if config.iscolab:
|
1434 |
+
app.queue(concurrency_count=511, max_size=1022).launch(share=True)
|
1435 |
+
else:
|
1436 |
+
app.queue(concurrency_count=511, max_size=1022).launch(
|
1437 |
+
server_name="0.0.0.0",
|
1438 |
+
inbrowser=not config.noautoopen,
|
1439 |
+
server_port=config.listen_port,
|
1440 |
+
quiet=True,
|
1441 |
+
)
|
assets/hubert/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/hubert/hubert_base.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f54b40fd2802423a5643779c4861af1e9ee9c1564dc9d32f54f20b5ffba7db96
|
3 |
+
size 189507909
|
assets/pretrained/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/pretrained_v2/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/pretrained_v2/D40k.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:471378e894e7191f89a94eda8288c5947b16bbe0b10c3f1f17efdb7a1d998242
|
3 |
+
size 142875703
|
assets/pretrained_v2/G40k.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3843da7fde33db1dab176146c70d6c2df06eafe9457f4e3aa10024e9c6a4b69
|
3 |
+
size 72959671
|
assets/pretrained_v2/f0D40k.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b6ab091e70801b28e3f41f335f2fc5f3f35c75b39ae2628d419644ec2b0fa09
|
3 |
+
size 142875703
|
assets/pretrained_v2/f0G40k.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b2c44035e782c4b14ddc0bede9e2f4a724d025cd073f736d4f43708453adfcb
|
3 |
+
size 73106273
|
assets/rmvpe/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/rmvpe/rmvpe.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5ed4719f59085d1affc5d81354c70828c740584f2d24e782523345a6a278962
|
3 |
+
size 181189687
|
assets/uvr5_weights/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/weights/.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*
|
2 |
+
!.gitignore
|
assets/weights/MJV2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3554bbb4916e7bf54526ff7eb63f8016b679c6a81074c63e28778c86dbb5cba
|
3 |
+
size 55192782
|
assets/weights/MJV2_e100_s100.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ad1ad8e0e934ddaea5c2c0df2bc520c567a7dceba3e65c23ddd6feed2ae0f46
|
3 |
+
size 55226492
|
assets/weights/MJV2_e120_s120.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9f9d7d649161f25e8ac54a559aaa262682b1bea7e1840961ef0e0436dd1b361
|
3 |
+
size 55226492
|
assets/weights/MJV2_e140_s140.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e7f3f9fb6a07ecf1b63de606c355068705f21445c1b6fc818c779d6312b854d
|
3 |
+
size 55226492
|
assets/weights/MJV2_e160_s160.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:903217c53b53a4700561abab0cfea198ebfaa816875dfbddc1b334771167ea71
|
3 |
+
size 55226492
|
assets/weights/MJV2_e180_s180.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5821ffc7d73a66a125a1bad3a3d9f7d51aff383a1a665358b1743ac6e98b5efe
|
3 |
+
size 55226492
|
assets/weights/MJV2_e200_s200.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c6fc3ffaf1ebb7473035dcd9f5ac90102fe00b79dd7fd03bd22f6530aaa528b
|
3 |
+
size 55226492
|
assets/weights/MJV2_e20_s20.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe47ad05b191636d760d7cd6d4831e6f0fde820260c789a1842aff12c32f49c3
|
3 |
+
size 55225574
|
assets/weights/MJV2_e220_s220.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76874e3abd5e7e7529fc853ee5169e4e0cbf923a6103105e27bf604df5369011
|
3 |
+
size 55226492
|
assets/weights/MJV2_e240_s240.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6be8f2d881f78809757a101136667d29106d10fc039fc95304ca15bffa23fdd
|
3 |
+
size 55226492
|
assets/weights/MJV2_e260_s260.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22430c9230f0a2b7a6c18226790dcf1ded2bee9377c44a0b43027535af9004e8
|
3 |
+
size 55226492
|
assets/weights/MJV2_e280_s280.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5469a8cefdf4eb1a131994a355bbfb000e728f7ea776d84b02165815a490d5df
|
3 |
+
size 55226492
|
assets/weights/MJV2_e300_s300.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0330a419b71671ec97cd92aea9445177f937b67b67c0af5fec5081a440489282
|
3 |
+
size 55226492
|
assets/weights/MJV2_e40_s40.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91b9ef9001966ca8c46fb32b2c522e9c6aba9034e5c070be3e3e87fa1d96608b
|
3 |
+
size 55225574
|
assets/weights/MJV2_e60_s60.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d8f64fe3cd9e479695e7be77560888ef23685c9e9df9beb1826589c3209da00
|
3 |
+
size 55225574
|
assets/weights/MJV2_e80_s80.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38c7fbb917e72379212491ab0b0b5685896f262aa58e38f212a63603c0622874
|
3 |
+
size 55225574
|
audios/somegirl.mp3
ADDED
Binary file (32.2 kB). View file
|
|
audios/someguy.mp3
ADDED
Binary file (24.9 kB). View file
|
|
audios/unachica.mp3
ADDED
Binary file (36.4 kB). View file
|
|
audios/unchico.mp3
ADDED
Binary file (35.9 kB). View file
|
|
configs/__pycache__/config.cpython-310.pyc
ADDED
Binary file (5.18 kB). View file
|
|