EasyAnimate / easyanimate /models /transformer3d.py
bubbliiiing
Create Code
19fe404
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import math
import os
from dataclasses import dataclass
from typing import Any, Dict, Optional
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn.init as init
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.embeddings import PatchEmbed, Timesteps, TimestepEmbedding
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormSingle
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, is_torch_version
from einops import rearrange
from torch import nn
from typing import Dict, Optional, Tuple
from .attention import (SelfAttentionTemporalTransformerBlock,
TemporalTransformerBlock)
from .patch import Patch1D, PatchEmbed3D, PatchEmbedF3D, UnPatch1D, TemporalUpsampler3D, CasualPatchEmbed3D
try:
from diffusers.models.embeddings import PixArtAlphaTextProjection
except:
from diffusers.models.embeddings import \
CaptionProjection as PixArtAlphaTextProjection
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
"""
For PixArt-Alpha.
Reference:
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.use_additional_conditions = use_additional_conditions
if use_additional_conditions:
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
self.resolution_embedder.linear_2 = zero_module(self.resolution_embedder.linear_2)
self.aspect_ratio_embedder.linear_2 = zero_module(self.aspect_ratio_embedder.linear_2)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
if self.use_additional_conditions:
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
else:
conditioning = timesteps_emb
return conditioning
class AdaLayerNormSingle(nn.Module):
r"""
Norm layer adaptive layer norm single (adaLN-single).
As proposed in PixArt-Alpha (see: https://arxiv.org/abs/2310.00426; Section 2.3).
Parameters:
embedding_dim (`int`): The size of each embedding vector.
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False):
super().__init__()
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions
)
self.silu = nn.SiLU()
self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=True)
def forward(
self,
timestep: torch.Tensor,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
batch_size: Optional[int] = None,
hidden_dtype: Optional[torch.dtype] = None,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
# No modulation happening here.
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
return self.linear(self.silu(embedded_timestep)), embedded_timestep
class TimePositionalEncoding(nn.Module):
def __init__(
self,
d_model,
dropout = 0.,
max_len = 24
):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
position = torch.arange(max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model))
pe = torch.zeros(1, max_len, d_model)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe)
def forward(self, x):
b, c, f, h, w = x.size()
x = rearrange(x, "b c f h w -> (b h w) f c")
x = x + self.pe[:, :x.size(1)]
x = rearrange(x, "(b h w) f c -> b c f h w", b=b, h=h, w=w)
return self.dropout(x)
@dataclass
class Transformer3DModelOutput(BaseOutput):
"""
The output of [`Transformer2DModel`].
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
distributions for the unnoised latent pixels.
"""
sample: torch.FloatTensor
class Transformer3DModel(ModelMixin, ConfigMixin):
"""
A 3D Transformer model for image-like data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
This is fixed during training since it is used to learn a number of position embeddings.
num_vector_embeds (`int`, *optional*):
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
num_embeds_ada_norm ( `int`, *optional*):
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
added to the hidden states.
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlocks` attention should contain a bias parameter.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: Optional[int] = None,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
norm_num_groups: int = 32,
cross_attention_dim: Optional[int] = None,
attention_bias: bool = False,
sample_size: Optional[int] = None,
num_vector_embeds: Optional[int] = None,
patch_size: Optional[int] = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: Optional[int] = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_type: str = "layer_norm",
norm_elementwise_affine: bool = True,
norm_eps: float = 1e-5,
attention_type: str = "default",
caption_channels: int = None,
# block type
basic_block_type: str = "motionmodule",
# enable_uvit
enable_uvit: bool = False,
# 3d patch params
patch_3d: bool = False,
fake_3d: bool = False,
time_patch_size: Optional[int] = None,
casual_3d: bool = False,
casual_3d_upsampler_index: Optional[list] = None,
# motion module kwargs
motion_module_type = "VanillaGrid",
motion_module_kwargs = None,
# time position encoding
time_position_encoding_before_transformer = False
):
super().__init__()
self.use_linear_projection = use_linear_projection
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.enable_uvit = enable_uvit
inner_dim = num_attention_heads * attention_head_dim
self.basic_block_type = basic_block_type
self.patch_3d = patch_3d
self.fake_3d = fake_3d
self.casual_3d = casual_3d
self.casual_3d_upsampler_index = casual_3d_upsampler_index
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
assert sample_size is not None, "Transformer3DModel over patched input must provide sample_size"
self.height = sample_size
self.width = sample_size
self.patch_size = patch_size
self.time_patch_size = self.patch_size if time_patch_size is None else time_patch_size
interpolation_scale = self.config.sample_size // 64 # => 64 (= 512 pixart) has interpolation scale 1
interpolation_scale = max(interpolation_scale, 1)
if self.casual_3d:
self.pos_embed = CasualPatchEmbed3D(
height=sample_size,
width=sample_size,
patch_size=patch_size,
time_patch_size=self.time_patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
elif self.patch_3d:
if self.fake_3d:
self.pos_embed = PatchEmbedF3D(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
else:
self.pos_embed = PatchEmbed3D(
height=sample_size,
width=sample_size,
patch_size=patch_size,
time_patch_size=self.time_patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
else:
self.pos_embed = PatchEmbed(
height=sample_size,
width=sample_size,
patch_size=patch_size,
in_channels=in_channels,
embed_dim=inner_dim,
interpolation_scale=interpolation_scale,
)
# 3. Define transformers blocks
if self.basic_block_type == "motionmodule":
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
)
for d in range(num_layers)
]
)
elif self.basic_block_type == "kvcompression_motionmodule":
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
kvcompression=False if d < 14 else True,
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
)
for d in range(num_layers)
]
)
elif self.basic_block_type == "selfattentiontemporal":
self.transformer_blocks = nn.ModuleList(
[
SelfAttentionTemporalTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
)
for d in range(num_layers)
]
)
else:
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
norm_eps=norm_eps,
attention_type=attention_type,
)
for d in range(num_layers)
]
)
if self.casual_3d:
self.unpatch1d = TemporalUpsampler3D()
elif self.patch_3d and self.fake_3d:
self.unpatch1d = UnPatch1D(inner_dim, True)
if self.enable_uvit:
self.long_connect_fc = nn.ModuleList(
[
nn.Linear(inner_dim, inner_dim, True) for d in range(13)
]
)
for index in range(13):
self.long_connect_fc[index] = zero_module(self.long_connect_fc[index])
# 4. Define output layers
self.out_channels = in_channels if out_channels is None else out_channels
if norm_type != "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.proj_out_1 = nn.Linear(inner_dim, 2 * inner_dim)
if self.patch_3d and not self.fake_3d:
self.proj_out_2 = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels)
else:
self.proj_out_2 = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
elif norm_type == "ada_norm_single":
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5)
if self.patch_3d and not self.fake_3d:
self.proj_out = nn.Linear(inner_dim, self.time_patch_size * patch_size * patch_size * self.out_channels)
else:
self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels)
# 5. PixArt-Alpha blocks.
self.adaln_single = None
self.use_additional_conditions = False
if norm_type == "ada_norm_single":
self.use_additional_conditions = self.config.sample_size == 128
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
# additional conditions until we find better name
self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=self.use_additional_conditions)
self.caption_projection = None
if caption_channels is not None:
self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim)
self.gradient_checkpointing = False
self.time_position_encoding_before_transformer = time_position_encoding_before_transformer
if self.time_position_encoding_before_transformer:
self.t_pos = TimePositionalEncoding(max_len = 4096, d_model = inner_dim)
def _set_gradient_checkpointing(self, module, value=False):
if hasattr(module, "gradient_checkpointing"):
module.gradient_checkpointing = value
def forward(
self,
hidden_states: torch.Tensor,
inpaint_latents: torch.Tensor = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer3DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (1 - encoder_attention_mask.to(encoder_hidden_states.dtype)) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
if inpaint_latents is not None:
hidden_states = torch.concat([hidden_states, inpaint_latents], 1)
# 1. Input
if self.casual_3d:
video_length, height, width = (hidden_states.shape[-3] - 1) // self.time_patch_size + 1, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
elif self.patch_3d:
video_length, height, width = hidden_states.shape[-3] // self.time_patch_size, hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
else:
video_length, height, width = hidden_states.shape[-3], hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size
hidden_states = rearrange(hidden_states, "b c f h w ->(b f) c h w")
hidden_states = self.pos_embed(hidden_states)
if self.adaln_single is not None:
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError(
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
)
batch_size = hidden_states.shape[0] // video_length
timestep, embedded_timestep = self.adaln_single(
timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype
)
hidden_states = rearrange(hidden_states, "(b f) (h w) c -> b c f h w", f=video_length, h=height, w=width)
# hidden_states
# bs, c, f, h, w => b (f h w ) c
if self.time_position_encoding_before_transformer:
hidden_states = self.t_pos(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
# 2. Blocks
if self.caption_projection is not None:
batch_size = hidden_states.shape[0]
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
skips = []
skip_index = 0
for index, block in enumerate(self.transformer_blocks):
if self.enable_uvit:
if index >= 15:
long_connect = self.long_connect_fc[skip_index](skips.pop())
hidden_states = hidden_states + long_connect
skip_index += 1
if self.casual_3d_upsampler_index is not None and index in self.casual_3d_upsampler_index:
hidden_states = rearrange(hidden_states, "b (f h w) c -> b c f h w", f=video_length, h=height, w=width)
hidden_states = self.unpatch1d(hidden_states)
video_length = (video_length - 1) * 2 + 1
hidden_states = rearrange(hidden_states, "b c f h w -> b (f h w) c", f=video_length, h=height, w=width)
if self.training and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
args = {
"basic": [],
"motionmodule": [video_length, height, width],
"selfattentiontemporal": [video_length, height, width],
"kvcompression_motionmodule": [video_length, height, width],
}[self.basic_block_type]
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
class_labels,
*args,
**ckpt_kwargs,
)
else:
kwargs = {
"basic": {},
"motionmodule": {"num_frames":video_length, "height":height, "width":width},
"selfattentiontemporal": {"num_frames":video_length, "height":height, "width":width},
"kvcompression_motionmodule": {"num_frames":video_length, "height":height, "width":width},
}[self.basic_block_type]
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
**kwargs
)
if self.enable_uvit:
if index < 13:
skips.append(hidden_states)
if self.fake_3d and self.patch_3d:
hidden_states = rearrange(hidden_states, "b (f h w) c -> (b h w) c f", f=video_length, w=width, h=height)
hidden_states = self.unpatch1d(hidden_states)
hidden_states = rearrange(hidden_states, "(b h w) c f -> b (f h w) c", w=width, h=height)
# 3. Output
if self.config.norm_type != "ada_norm_single":
conditioning = self.transformer_blocks[0].norm1.emb(
timestep, class_labels, hidden_dtype=hidden_states.dtype
)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
hidden_states = self.proj_out_2(hidden_states)
elif self.config.norm_type == "ada_norm_single":
shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# unpatchify
if self.adaln_single is None:
height = width = int(hidden_states.shape[1] ** 0.5)
if self.patch_3d:
if self.fake_3d:
hidden_states = hidden_states.reshape(
shape=(-1, video_length * self.patch_size, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states)
else:
hidden_states = hidden_states.reshape(
shape=(-1, video_length, height, width, self.time_patch_size, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nfhwopqc->ncfohpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, video_length * self.time_patch_size, height * self.patch_size, width * self.patch_size)
)
else:
hidden_states = hidden_states.reshape(
shape=(-1, video_length, height, width, self.patch_size, self.patch_size, self.out_channels)
)
hidden_states = torch.einsum("nfhwpqc->ncfhpwq", hidden_states)
output = hidden_states.reshape(
shape=(-1, self.out_channels, video_length, height * self.patch_size, width * self.patch_size)
)
if not return_dict:
return (output,)
return Transformer3DModelOutput(sample=output)
@classmethod
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, patch_size=2, transformer_additional_kwargs={}):
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
print(f"loaded 3D transformer's pretrained weights from {pretrained_model_path} ...")
config_file = os.path.join(pretrained_model_path, 'config.json')
if not os.path.isfile(config_file):
raise RuntimeError(f"{config_file} does not exist")
with open(config_file, "r") as f:
config = json.load(f)
from diffusers.utils import WEIGHTS_NAME
model = cls.from_config(config, **transformer_additional_kwargs)
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
model_file_safetensors = model_file.replace(".bin", ".safetensors")
if os.path.exists(model_file_safetensors):
from safetensors.torch import load_file, safe_open
state_dict = load_file(model_file_safetensors)
else:
if not os.path.isfile(model_file):
raise RuntimeError(f"{model_file} does not exist")
state_dict = torch.load(model_file, map_location="cpu")
if model.state_dict()['pos_embed.proj.weight'].size() != state_dict['pos_embed.proj.weight'].size():
new_shape = model.state_dict()['pos_embed.proj.weight'].size()
if len(new_shape) == 5:
state_dict['pos_embed.proj.weight'] = state_dict['pos_embed.proj.weight'].unsqueeze(2).expand(new_shape).clone()
state_dict['pos_embed.proj.weight'][:, :, :-1] = 0
else:
model.state_dict()['pos_embed.proj.weight'][:, :4, :, :] = state_dict['pos_embed.proj.weight']
model.state_dict()['pos_embed.proj.weight'][:, 4:, :, :] = 0
state_dict['pos_embed.proj.weight'] = model.state_dict()['pos_embed.proj.weight']
if model.state_dict()['proj_out.weight'].size() != state_dict['proj_out.weight'].size():
new_shape = model.state_dict()['proj_out.weight'].size()
state_dict['proj_out.weight'] = torch.tile(state_dict['proj_out.weight'], [patch_size, 1])
if model.state_dict()['proj_out.bias'].size() != state_dict['proj_out.bias'].size():
new_shape = model.state_dict()['proj_out.bias'].size()
state_dict['proj_out.bias'] = torch.tile(state_dict['proj_out.bias'], [patch_size])
tmp_state_dict = {}
for key in state_dict:
if key in model.state_dict().keys() and model.state_dict()[key].size() == state_dict[key].size():
tmp_state_dict[key] = state_dict[key]
else:
print(key, "Size don't match, skip")
state_dict = tmp_state_dict
m, u = model.load_state_dict(state_dict, strict=False)
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
params = [p.numel() if "attn_temporal." in n else 0 for n, p in model.named_parameters()]
print(f"### Attn temporal Parameters: {sum(params) / 1e6} M")
return model