Summarization / app.py
jarif's picture
Update app.py
4961115 verified
raw
history blame
1.02 kB
import torch
from fastai.text.all import *
from blurr.text.data.all import *
from blurr.text.modeling.all import * # Import only needed functions
from transformers import T5Tokenizer, T5ForConditionalGeneration # Use T5 specifically
# Load the pre-trained model and tokenizer (adjust for Bart if needed)
pretrained_model_name = "facebook/bart-large-cnn" # Or "facebook/bart-base"
hf_tokenizer = T5Tokenizer.from_pretrained(pretrained_model_name)
def summarize(article):
# Define your data transformation pipeline here, if applicable
# ...
# Load the exported model
learn = load_learner('article_highlights.pkl')
# Generate the summary
summary = learn.predict(article)[0]['highlights']
return summary
# Create the Gradio interface
iface = gr.Interface(
fn=summarize,
inputs="text",
outputs="text",
title="Article Summarizer (Part 3)",
description="Enter an article and get a summary.",
examples=[["This is an example article..."]]
)
# Launch the Gradio interface
iface.launch()