|
import streamlit as st |
|
from PyPDF2 import PdfReader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_google_genai import GoogleGenerativeAIEmbeddings |
|
import google.generativeai as genai |
|
from langchain.vectorstores import FAISS |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.prompts import PromptTemplate |
|
from dotenv import load_dotenv |
|
import os |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
api_key = os.getenv("GOOGLE_API_KEY") |
|
|
|
|
|
st.set_page_config(page_title="DocWizard Instant Insights and Analysis", layout="wide") |
|
|
|
|
|
st.markdown(""" |
|
## Document Intelligence Explorer π€ |
|
|
|
This chatbot utilizes the Retrieval-Augmented Generation (RAG) framework with Google's Generative AI model Gemini-PRO. It processes uploaded PDF documents by segmenting them into chunks, creating a searchable vector store, and generating precise answers to your questions. This method ensures high-quality, contextually relevant responses for an efficient user experience. |
|
|
|
### How It Works |
|
|
|
1. **Upload Your Documents**: You can upload multiple PDF files simultaneously for comprehensive analysis. |
|
2. **Ask a Question**: After processing the documents, type your question related to the content of your uploaded documents for a detailed answer. |
|
""") |
|
|
|
def get_pdf_text(pdf_docs): |
|
""" |
|
Extract text from uploaded PDF documents. |
|
""" |
|
text = "" |
|
for pdf in pdf_docs: |
|
pdf_reader = PdfReader(pdf) |
|
for page in pdf_reader.pages: |
|
page_text = page.extract_text() |
|
if page_text: |
|
text += page_text |
|
return text |
|
|
|
def get_text_chunks(text): |
|
""" |
|
Split text into manageable chunks for processing. |
|
""" |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) |
|
chunks = text_splitter.split_text(text) |
|
return chunks |
|
|
|
def get_vector_store(text_chunks, api_key): |
|
""" |
|
Create and save a FAISS vector store from text chunks. |
|
""" |
|
try: |
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key) |
|
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) |
|
vector_store.save_local("faiss_index") |
|
st.success("FAISS index created and saved successfully.") |
|
except Exception as e: |
|
st.error(f"Error creating FAISS index: {e}") |
|
|
|
def get_conversational_chain(api_key): |
|
""" |
|
Set up the conversational chain using the Gemini-PRO model. |
|
""" |
|
prompt_template = """ |
|
Answer the question as detailed as possible from the provided context. If the answer is not in the provided context, |
|
say "Answer is not available in the context". Do not provide incorrect information.\n\n |
|
Context:\n{context}\n |
|
Question:\n{question}\n |
|
Answer: |
|
""" |
|
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3, google_api_key=api_key) |
|
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) |
|
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) |
|
return chain |
|
|
|
def user_input(user_question, api_key): |
|
""" |
|
Handle user input and generate a response from the chatbot. |
|
""" |
|
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=api_key) |
|
|
|
try: |
|
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) |
|
docs = new_db.similarity_search(user_question) |
|
chain = get_conversational_chain(api_key) |
|
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True) |
|
st.write("Reply:", response["output_text"]) |
|
except ValueError as e: |
|
st.error(f"Error loading FAISS index or generating response: {e}") |
|
|
|
def main(): |
|
""" |
|
Main function to run the Streamlit app. |
|
""" |
|
st.header("AI Assistant π€") |
|
|
|
user_question = st.text_input("Ask a Question from the PDF Files", key="user_question") |
|
|
|
if st.button("Generate Text", key="generate_button"): |
|
if user_question: |
|
with st.spinner("Generating result..."): |
|
user_input(user_question, api_key) |
|
|
|
with st.sidebar: |
|
st.title("Menu:") |
|
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True, key="pdf_uploader") |
|
|
|
if st.button("Submit & Process", key="process_button"): |
|
if not api_key: |
|
st.error("Google API key is missing. Please add it to the .env file.") |
|
return |
|
|
|
if pdf_docs: |
|
with st.spinner("Processing..."): |
|
raw_text = get_pdf_text(pdf_docs) |
|
text_chunks = get_text_chunks(raw_text) |
|
get_vector_store(text_chunks, api_key) |
|
st.success("Processing complete. You can now ask questions based on the uploaded documents.") |
|
else: |
|
st.error("No PDF files uploaded. Please upload at least one PDF file to proceed.") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|